Tech Law, Inc. Drinking Water Project

Week 2/Sample Batch 2

Brandi Rasinger 2/16/2012

1620 north main avenue • scranion, pennsylvania 18508 • ph.: 570-348-0775 • fax: 570-347-4139
PADEP Lab No: 35-00302 www.neelaboratories.com • neenvironmental@epix.net

ANALYTICAL REPORT

CLIENT: TECH LAW, INC SCOUT DELLAMIA (303) 809-7442

SAMPLE TYPE: DRINKING WATER

SAMPLE SOURCE: FB06 SAMPLE DATE: 01/30/12 SAMPLE TIME: 0930

SAMPLE COLLECTOR: CLIENT/DJ

SAMPLE ID: 26636

PARAMETER	METHOD	LAB TECH		SAMPLE	ANALYSIS		UNITS	RESULTS	MCL	QL
ł			STAI	RT	ENI)				
			DATE	TIME	DATE	TIME				
TOTAL COLIFORM BACTERIA	-SM 9222B	BR	1/31/2012	1508	2/1/2012	1430	cfu/100ml	<1	<1	1
HETEROTROPHIC PLATE COUNT	SM 9215C	BR	1/31/2012	0912	2/7/2012	1000	cfu/1ml	<1	n/a	1

SAMPLE COMMENTS:

TOTAL COLIFORM BACTERIA IS A GENERAL INDICATOR OF THE BACTERIOLOGICAL QUALITY OF WATER. RESULTS ARE EXPRESSED AS THE NUMBER OF COLIFORM ORGANISMS PER 100 MILLILITERS OF WATER. THE US EPA AND THE PA DEP HAVE DETERMINED THAT PUBLIC WATER SUPPLY SAMPLES IN WHICH COLIFORM BACTERIA ARE FOUND ARE UNSUITABLE FOR DRINKING.

MCL / MAXIMUM CONTAMINANT LEVEL - THE MAXIMUM PERMISSIBLE LEVEL OF A CONTAMINANT IN WATER WHICH IS DELIVERED TO A PUBLIC WATER SYSTEM ESTABLISHED UNDER THE FEDERAL SAFE EDRINKING WATER ACT.

QL- THE MINIMUM DETECTABLE LEVEL OF A CONTAMINANT BASED ON THE METHOD USED.

REVIEWED BY:

John Scheatzle, President

Page 1 of 1

1620 north main avenue • scranton, pennsylvania 18508 • ph.: 570-348-0775 • fax: 570-347-4139
PADEP Lab No: 35-00302 www.neelaboratories.com • neenvironmental@epix.net

ANALYTICAL REPORT

CLIENT: TECH LAW, INC SCOUT DELLAMIA (303) 809-7442

SAMPLE TYPE: DRINKING WATER

SAMPLE SOURCE: HW13 SAMPLE DATE: 01/30/12 SAMPLE TIME: 1123

SAMPLE COLLECTOR: CLIENT/BB

SAMPLE ID: 26637

PARAMÉTER	METHOD	LAB TECH		SAMPLE	ANALYSIS		UNITS	RESULTS	MCL	QL
			STAI	RT	EN	D				
			DATE	TIME	DATE	TIME				
TOTAL COLIFORM BACTERIA	SM 9222B	BR	1/31/2012	1509	2/1/2012	1430	cfu/100ml	<1	<1	1
HETEROTROPHIC PLATE COUNT	SM 9215C	BR	1/31/2012	0915	2/7/2012	1000	cfu/1ml	560	n/a	1

SAMPLE COMMENTS:

TOTAL COLIFORM BACTERIA IS A GENERAL INDICATOR OF THE BACTERIOLOGICAL QUALITY OF WATER. RESULTS ARE EXPRESSED AS THE NUMBER OF COLIFORM ORGANISMS PER 100 MILLILITERS OF WATER. THE US EPA AND THE PA DEP HAVE DETERMINED THAT PUBLIC WATER SUPPLY SAMPLES IN WHICH COLIFORM BACTERIA ARE FOUND ARE UNSUITABLE FOR DRINKING.

MCL / MAXIMUM CONTAMINANT LEVEL - THE MAXIMUM PERMISSIBLE LEVEL OF A CONTAMINANT IN WATER WHICH IS DELIVERED TO A PUBLIC WATER SYSTEM ESTABLISHED UNDER THE FEDERAL SAFE EDRINKING WATER ACT.

QL- THE MINIMUM DETECTABLE LEVEL OF A CONTAMINANT BASED ON THE METHOD USED.

REVIEWED BY:

John Scheatzle, President

Page 1 of 1

1620 north main avenue • scranton, pennsylvania 18508 • ph.: 570-348-0775 • fax: 570-347-4139
PADEP Lab No: 35-00302 www.neclaboratorics.com • neenvironmental@epix.net

ANALYTICAL REPORT

CLIENT: TECH LAW, INC SCOUT DELLAMIA (303) 809-7442

SAMPLE TYPE: DRINKING WATER

SAMPLE SOURCE: HW18 SAMPLE DATE: 01/30/12 SAMPLE TIME: 1127

SAMPLE COLLECTOR: CLIENT/MF

SAMPLE ID: 26635

PARAMETER	METHOD	LAB TECH		SAMPLE	E ANALYSIS		UNITS	RESULTS	MCL.	QL.
			STA	₹Т	ENG					
			DATE	TIME	DATE	TIME				<u></u>
TOTAL COLIFORM BACTERIA	SM 9222B	BR	1/31/2012	1510	2/1/2012	1430	efu/100ml	<1	<1	1
HETEROTROPHIC PLATE COUNT	SM 9215C	BR	1/31/2012	0910	2/7/2012	1000	cfu/1ml	7 3	n/a	1

SAMPLE COMMENTS:

TOTAL COLIFORM BACTERIA IS A GENERAL INDICATOR OF THE BACTERIOLOGICAL QUALITY OF WATER. RESULTS ARE EXPRESSED AS THE NUMBER OF COLIFORM ORGANISMS PER 100 MILLILITERS OF WATER. THE US EPA AND THE PA DEP HAVE DETERMINED THAT PUBLIC WATER SUPPLY SAMPLES IN WHICH COLIFORM BACTERIA ARE FOUND ARE UNSUITABLE FOR DRINKING.

MCL / MAXIMUM CONTAMINANT LEVEL - THE MAXIMUM PERMISSIBLE LEVEL OF A CONTAMINANT IN WATER WHICH IS DELIVERED TO A PUBLIC WATER SYSTEM ESTABLISHED UNDER THE FEDERAL SAFE EDRINKING WATER ACT.

QL- THE MINIMUM DETECTABLE LEVEL OF A CONTAMINANT BASED ON THE METHOD USED.

REVIEWED BY:

John Scheatzle, President

Page 1 of 1

1620 north main avenue • scranton, pennsylvania 18508 • ph.: 570-348-0775 • fax: 570-347-4139
PADEP Lab No: 35-00302 www.neelaboratories.com • neenvironmemal@epix.net

ANALYTICAL REPORT

CLIENT: TECH LAW, INC SCOUT DELLAMIA (303) 809-7442

SAMPLE TYPE: DRINKING WATER

SAMPLE SOURCE: HW18-P SAMPLE DATE: 01/30/12

SAMPLE TIME: 1152

SAMPLE COLLECTOR: CLIENT/DJ

SAMPLE ID: 26633

PARAMETER	METHOD	LAB TECH			E ANALYSIS		UNITS	RESULTS	MCL	QL
			STAI	RT	EN	ID				
			DATE	TIME	DATE	TIME				
TOTAL COLIFORM BACTERIA	SM 9222B	BR	1/31/2012	1512	2/1/2012	1430	cfu/100ml	<1	<1	1
HETEROTROPHIC PLATE COUNT	SM 9215C	BR	1/31/2012	0905	2/7/2012	1000	cfu/1ml	68	n/a	1

SAMPLE COMMENTS:

TOTAL COLIFORM BACTERIA IS A GENERAL INDICATOR OF THE BACTERIOLOGICAL QUALITY OF WATER. RESULTS ARE EXPRESSED AS THE NUMBER OF COLIFORM ORGANISMS PER 100 MILLILITERS OF WATER. THE US EPA AND THE PA DEP HAVE DETERMINED THAT PUBLIC WATER SUPPLY SAMPLES IN WHICH COLIFORM BACTERIA ARE FOUND ARE UNSUITABLE FOR DRINKING.

MCL / MAXIMUM CONTAMINANT LEVEL - THE MAXIMUM PERMISSIBLE LEVEL OF A CONTAMINANT IN WATER WHICH IS DELIVERED TO A PUBLIC WATER SYSTEM ESTABLISHED UNDER THE FEDERAL SAFE EDRINKING WATER ACT.

QL- THE MINIMUM DETECTABLE LEVEL OF A CONTAMINANT BASED ON THE METHOD USED.

REVIEWED BY:

John Scheatzle, President

1620 north main avenue * scranton, pennsylvania 18508 • ph.: 570-348-0775 • fax: 570-347-4139
PADEP Lab No; 35-00302 www.neelaboratories.com • neenvironmental@epix.net

ANALYTICAL REPORT

CLIENT: TECH LAW, INC SCOUT DELLAMIA (303) 809-7442

SAMPLE TYPE: DRINKING WATER

SAMPLE SOURCE: HW20 SAMPLE DATE: 01/30/12 SAMPLE TIME: 1612

SAMPLE COLLECTOR: CLIENT/MF

SAMPLE ID: 26634

PARAMETER	METHOD	LAB TECH	-	SAMPLE	ANALYSIS		UNITS	RESULTS	MCL	QL
			STAI	RT	EN)				
			DATE	TIME	DATE	TIME				<u> </u>
TOTAL COLIFORM BACTERIA	SM 92228	BR	1/31/2012	1513	2/1/2012	1430	cfu/100ml	<1	<1	1
HETEROTROPHIC PLATE COUNT	SM 9215C	BR	1/31/2012	0908	2/7/2012	1000	cfu/1mi	67	n/a	1

SAMPLE COMMENTS:

TOTAL COLIFORM BACTERIA IS A GENERAL INDICATOR OF THE BACTERIOLOGICAL QUALITY OF WATER. RESULTS ARE EXPRESSED AS THE NUMBER OF COLIFORM ORGANISMS PER 100 MILLILITERS OF WATER. THE US EPA AND THE PA DEP HAVE DETERMINED THAT PUBLIC WATER SUPPLY SAMPLES IN WHICH COLIFORM BACTERIA ARE FOUND ARE UNSUITABLE FOR DRINKING.

MCL / MAXIMUM CONTAMINANT LEVEL - THE MAXIMUM PERMISSIBLE LEVEL OF A CONTAMINANT IN WATER WHICH IS DELIVERED TO A PUBLIC WATER SYSTEM ESTABLISHED UNDER THE FEDERAL SAFE EDRINKING WATER ACT.

QL- THE MINIMUM DETECTABLE LEVEL OF A CONTAMINANT BASED ON THE METHOD USED.

REVIEWED BY:

John Scheatzle, President

1620 north main avenue • scranton, pennsylvania 18508 • ph.: 570-348-0775 • fax: 570-347-4139 PADEP Lab No: 35-00302 www.nedlaboratories.com • neenvironmental@epix.net

ANALYTICAL REPORT

CLIENT: TECH LAW, INC SCOUT DELLAMIA (303) 809-7442

SAMPLE TYPE: DRINKING WATER

SAMPLE SOURCE: HW20-P SAMPLE DATE: 01/30/12

SAMPLE TIME: 1629

SAMPLE COLLECTOR: CLIENT/DJ

SAMPLE ID: 26631

PARAMETER	METHOD	LAB TECH		SAMPLE	E ANALYSIS		UNITS	RESULTS	MCL	QL
			STA	RT	ΕN	1D				
-			DATE	TIME	DATE	TIME	<u></u>		·	ļ
TOTAL COLIFORM BACTERIA	SM 9222B	BR	1/31/2012	1514	2/1/2012	1430	cfu/100ml	<1	<1	1
HETEROTROPHIC PLATE COUNT	SM 9215C	BR	1/31/2012	0900	2/7/2012	1000	cfu/1ml	57	n/a	1

SAMPLE COMMENTS:

TOTAL COLIFORM BACTERIA IS A GENERAL INDICATOR OF THE BACTERIOLOGICAL.

QUALITY OF WATER. RESULTS ARE EXPRESSED AS THE NUMBER OF COLIFORM ORGANISMS PER
100 MILLILITERS OF WATER. THE US EPA AND THE PA DEP HAVE DETERMINED THAT

PUBLIC WATER SUPPLY SAMPLES IN WHICH COLIFORM BACTERIA ARE FOUND ARE
UNSUITABLE FOR DRINKING.

MCL / MAXIMUM CONTAMINANT LEVEL - THE MAXIMUM PERMISSIBLE LEVEL OF A CONTAMINANT IN WATER WHICH IS DELIVERED TO A PUBLIC WATER SYSTEM ESTABLISHED UNDER THE FEDERAL SAFE EDRINKING WATER ACT.

QL- THE MINIMUM DETECTABLE LEVEL OF A CONTAMINANT BASED ON THE METHOD USED.

REVIEWED BY:

John Scheatzle, President

1520 north main avenue • scranton, pennsylvania 18508 • ph.: 570-348-0775 • fax: 570-347-4139
PADEP Lab No: 35-00302 www.neelaboratories.com • neenvironmental@epix.net

ANALYTICAL REPORT

CLIENT: TECH LAW, INC SCOUT DELLAMIA (303) 809-7442

SAMPLE TYPE: DRINKING WATER

SAMPLE SOURCE: HW25-P SAMPLE DATE: 01/30/12 SAMPLE TIME: 1532

SAMPLE COLLECTOR: CLIENT/BB

SAMPLE ID: 26632

PARAMETER	METHOD	LAB TECH		SAMPLE	E ANALYSIS		UNITS	RESULTS	MCL	QL
			STAF	RT -	ENI)				
			DATE	TIME	DATE	TIME	<u> </u>			
TOTAL COLIFORM BACTERIA	SM 9222B	BR	1/31/2012	1515	2/1/2012	1430	cfu/100ml	<1	<1	1
HETEROTROPHIC PLATE COUNT	SM 9215C	BR	1/31/2012	0902	2/7/2012	1000	cfu/1ml	42	n/a	1

SAMPLE COMMENTS:

TOTAL COLIFORM BACTERIA IS A GENERAL INDICATOR OF THE BACTERIOLOGICAL QUALITY OF WATER. RESULTS ARE EXPRESSED AS THE NUMBER OF COLIFORM ORGANISMS PER 100 MILLILITERS OF WATER. THE US EPA AND THE PA DEP HAVE DETERMINED THAT PUBLIC WATER SUPPLY SAMPLES IN WHICH COLIFORM BACTERIA ARE FOUND ARE UNSUITABLE FOR DRINKING.

MCL / MAXIMUM CONTAMINANT LEVEL - THE MAXIMUM PERMISSIBLE LEVEL OF A CONTAMINANT IN WATER WHICH IS DELIVERED TO A PUBLIC WATER SYSTEM ESTABLISHED UNDER THE FEDERAL SAFE EDRINKING WATER ACT.

QL- THE MINIMUM DETECTABLE LEVEL OF A CONTAMINANT BASED ON THE METHOD USED.

REVIEWED BY:

John Scheatzle, President

1620 north main avenue • scranton, pennsylvania 18508 • ph.: 570-348-0775 • fax: 570-347-4139 FADEP Lab No: 35-00302 www.neelaboratories.com • neerwironmental@epix.net

ANALYTICAL REPORT

CLIENT: TECH LAW, INC SCOUT DELLAMIA (303) 809-7442

SAMPLE TYPE: DRINKING WATER

SAMPLE SOURCE: FB07 SAMPLE DATE: 01/31/12

SAMPLE TIME: 1415

SAMPLE COLLECTOR: CLIENT/DJ

SAMPLE ID: 26670

PARAMETER	METHOD	LAB TECH		SAMPLE	ANALYSIS		UNITS	RESULTS	MCL	QL
			STA	RT	ENI)				
			DATE	TIME	DATE	TIME				
TOTAL COLIFORM BACTERIA	SM 9222B	BR	2/1/2012	1603	2/2/2012	1530	cfu/100ml	<1	<1	1
HETEROTROPHIC PLATE COUNT	SM 9215C	BR	2/1/2012	1000	2/8/2012	1000	cfu/1m!	<1	n/a	1

SAMPLE COMMENTS:

TOTAL COLIFORM BACTERIA IS A GENERAL INDICATOR OF THE BACTERIOLOGICAL QUALITY OF WATER. RESULTS ARE EXPRESSED AS THE NUMBER OF COLIFORM ORGANISMS PER 100 MILLILITERS OF WATER. THE US EPA AND THE PA DEP HAVE DETERMINED THAT PUBLIC WATER SUPPLY SAMPLES IN WHICH COLIFORM BACTERIA ARE FOUND ARE UNSUITABLE FOR DRINKING.

MCL / MAXIMUM CONTAMINANT LEVEL - THE MAXIMUM PERMISSIBLE LEVEL OF A CONTAMINANT IN WATER WHICH IS DELIVERED TO A PUBLIC WATER SYSTEM ESTABLISHED UNDER THE FEDERAL SAFE EDRINKING WATER ACT.

QL- THE MINIMUM DETECTABLE LEVEL OF A CONTAMINANT BASED ON THE METHOD USED.

REVIEWED BY:

John Scheatzle, President

1620 north main avenue • scranton, pennsylvania 18508 • ph.: 570-348-0775 • tax: 570-347-4139
PADEP Lab No: 35-00302 www.neetaboratories.com • neenvironmental@epix.net

ANALYTICAL REPORT

CLIENT: TECH LAW, INC SCOUT DELLAMIA (303) 809-7442

SAMPLE TYPE: DRINKING WATER

SAMPLE SOURCE: HW26 SAMPLE DATE: 01/31/12 SAMPLE TIME: 1026

SAMPLE COLLECTOR: CLIENT/BB

SAMPLE ID: 26671

PARAMETER	METHOD	LAB TECH		SAMPLE	E ANALYSIS		UNITS	RESULTS	MCL	QL
1			STA	RT	. EN	כ				
			DATE	TIME	DATE	TIME				
TOTAL COLIFORM BACTERIA	SM 9222B	BR	2/1/2012	1606	2/2/2012	1530	cfu/100mi	<1	<1	1
HETEROTROPHIC PLATE COUNT	SM 9215C	BR	2/1/2012	1008	2/8/2012	1000	cfu/1ml	68	n/a	1

SAMPLE COMMENTS:

TOTAL COLIFORM BACTERIA IS A GENERAL INDICATOR OF THE BACTERIOLOGICAL QUALITY OF WATER. RESULTS ARE EXPRESSED AS THE NUMBER OF COLIFORM ORGANISMS PER 100 MILLILITERS OF WATER. THE US EPA AND THE PA DEP HAVE DETERMINED THAT PUBLIC WATER SUPPLY SAMPLES IN WHICH COLIFORM BACTERIA ARE FOUND ARE UNSUITABLE FOR DRINKING.

MCL / MAXIMUM CONTAMINANT LEVEL - THE MAXIMUM PERMISSIBLE LEVEL OF A CONTAMINANT IN WATER WHICH IS DELIVERED TO A PUBLIC WATER SYSTEM ESTABLISHED UNDER THE FEDERAL SAFE EDRINKING WATER ACT.

QL- THE MINIMUM DETECTABLE LEVEL OF A CONTAMINANT BASED ON THE METHOD USED.

REVIEWED BY:

John Scheatzle, President

1620 north main avenue · scranton, pennsylvania 18508 · ph.: 570-348-0775 · fax: 570-347-4139
PADEP Lab No: 35-00302 www.neelaboratories.com · neenvironmental@epix.net

ANALYTICAL REPORT

CLIENT: TECH LAW, INC SCOUT DELLAMIA (303) 809-7442

SAMPLE TYPE: DRINKING WATER

SAMPLE SOURCE: HW26-P SAMPLE DATE: 01/31/12 SAMPLE TIME: 1137

SAMPLE COLLECTOR: CLIENT/DJ

SAMPLE ID: 26672

PARAMETER	METHOD	LAB TECH		SAMPLE	ANALYSIS		UNITS	RESULTS	MCL	QL
			STA	RT	ENI)				
	 		DATE	TIME	DATE	TIME				
TOTAL COLIFORM BACTERIA	SM 9222B	BR	2/1/2012	1607	2/2/2012	1530	cfu/100ml	<1	<1	1
HETEROTROPHIC PLATE COUNT	SM 9215C	BR	2/1/2012	1010	2/8/2012	1000	cfu/1ml	34	n/a	1

SAMPLE COMMENTS:

TOTAL COLIFORM BACTERIA IS A GENERAL INDICATOR OF THE BACTERIOLOGICAL QUALITY OF WATER. RESULTS ARE EXPRESSED AS THE NUMBER OF COLIFORM ORGANISMS PER 100 MILLILITERS OF WATER. THE US EPA AND THE PA DEP HAVE DETERMINED THAT PUBLIC WATER SUPPLY SAMPLES IN WHICH COLIFORM BACTERIA ARE FOUND ARE UNSUITABLE FOR DRINKING.

MCL / MAXIMUM CONTAMINANT LEVEL - THE MAXIMUM PERMISSIBLE LEVEL OF A CONTAMINANT IN WATER WHICH IS DELIVERED TO A PUBLIC WATER SYSTEM ESTABLISHED UNDER THE FEDERAL SAFE EDRINKING WATER ACT.

QL- THE MINIMUM DETECTABLE LEVEL OF A CONTAMINANT BASED ON THE METHOD USED.

REVIEWED BY:

John Scheatzle, President

Page 1 of 1

1620 north main avenue • scranton, pennsylvania 18508 • ph.: 570-348-0775 • fax: 570-347-4159 PADEP Lab No: 35-00302 www.neelaboratories.com • neenvironmental@epix.net

ANALYTICAL REPORT

CLIENT: TECH LAW, INC SCOUT DELLAMIA (303) 809-7442

SAMPLE TYPE: DRINKING WATER

SAMPLE SOURCE: HW29 SAMPLE DATE: 01/31/12 SAMPLE TIME: 1818

SAMPLE COLLECTOR: CLIENT/MF

SAMPLE ID: 26741

PARAMETER	METHOD	LAB TECH		SAMPLE	ANALYSIS		UNITS	RESULTS	MCL	QL
			STA	RT	EN)				
			DATE	TIME	DATE	TIME				
TOTAL COLIFORM BACTERIA	SM 9222B	BR	2/1/2012	1635	2/2/2012	1530	cfu/100ml	<1	<1	1
HETEROTROPHIC PLATE COUNT	SM 9215C	BR	2/1/2012	1402	2/8/2012	1000	cfu/1ml	33	n/a	1

SAMPLE COMMENTS:

TOTAL COLIFORM BACTERIA IS A GENERAL INDICATOR OF THE BACTERIOLOGICAL QUALITY OF WATER. RESULTS ARE EXPRESSED AS THE NUMBER OF COLIFORM ORGANISMS PER 100 MILLILITERS OF WATER. THE US EPA AND THE PA DEP HAVE DETERMINED THAT PUBLIC WATER SUPPLY SAMPLES IN WHICH COLIFORM BACTERIA ARE FOUND ARE UNSUITABLE FOR DRINKING.

MCL / MAXIMUM CONTAMINANT LEVEL - THE MAXIMUM PERMISSIBLE LEVEL OF A CONTAMINANT IN WATER WHICH IS DELIVERED TO A PUBLIC WATER SYSTEM ESTABLISHED UNDER THE FEDERAL SAFE EDRINKING WATER ACT.

QL- THE MINIMUM DETECTABLE LEVEL OF A CONTAMINANT BASED ON THE METHOD USED.

REVIEWED BY:

John Scheatzle, President

Page 1 of 1

1620 north main avenue • scranton, pennsylvania 18508 • ph.: 570-348-0775 • fax: 570-347-4139 PADEP Lab No: 35-00302 www.neefaboratories.com • neenvironmental@epix.nat

ANALYTICAL REPORT

CLIENT: TECH LAW, INC SCOUT DELLAMIA (303) 809-7442

SAMPLE TYPE: DRINKING WATER

SAMPLE SOURCE: HW29Z SAMPLE DATE: 01/31/12 SAMPLE TIME: 1818

SAMPLE COLLECTOR: CLIENT/MF

SAMPLE ID: 26740

PARAMETER	METHOD	LAB TECH		SAMPLE	ANALYSIS		UNITS	RESULTS	MCL	QL
			STA	RT	ENI)				
			DATE	TIME	DATE	TIME				
TOTAL COLIFORM BACTERIA	SM 9222B	BR	2/1/2012	1634	2/2/2012	1530	cfu/100ml	<1	<1	1
HETEROTROPHIC PLATE COUNT	SM 9215C	BR	2/1/2012	1400	2/8/2012	1000	cfu/1ml	75	n/a	1

SAMPLE COMMENTS:

TOTAL COLIFORM BACTERIA IS A GENERAL INDICATOR OF THE BACTERIOLOGICAL QUALITY OF WATER. RESULTS ARE EXPRESSED AS THE NUMBER OF COLIFORM ORGANISMS PER 100 MILLILITERS OF WATER. THE US EPA AND THE PA DEP HAVE DETERMINED THAT PUBLIC WATER SUPPLY SAMPLES IN WHICH COLIFORM BACTERIA ARE FOUND ARE UNSUITABLE FOR DRINKING.

MCL / MAXIMUM CONTAMINANT LEVEL - THE MAXIMUM PERMISSIBLE LEVEL OF A CONTAMINANT IN WATER WHICH IS DELIVERED TO A PUBLIC WATER SYSTEM ESTABLISHED UNDER THE FEDERAL SAFE EDRINKING WATER ACT.

QL- THE MINIMUM DETECTABLE LEVEL OF A CONTAMINANT BASED ON THE METHOD USED.

REVIEWED BY:

John Scheatzle, President

Page 1 of 1

1620 north main avenue • scranton, pennsylvania 18508 • ph.: 570-348-0775 • fax: 570-347-4139 PADEP Lab No: 35-00302 www.neelaboratories.com • neenvironmental@epix.net

ANALYTICAL REPORT

CLIENT: TECH LAW, INC SCOUT DELLAMIA (303) 809-7442

SAMPLE TYPE: DRINKING WATER

SAMPLE SOURCE: HW35 SAMPLE DATE: 01/31/12 SAMPLE TIME: 1149

SAMPLE COLLECTOR: CLIENT/MF

SAMPLE ID: 26673

PARAMETER	METHOD	LAB TECH		SAMPLE	ANALYSIS		UNITS	RESULTS	MCL	QL
			STA	RT	EN)				
			DATE	TIME	DATE	TIME				<u> </u>
TOTAL COLIFORM BACTERIA	SM 9222B	BR	2/1/2012	1605	2/2/2012	1530	cfu/100ml	34	<1	1
FECAL COLIFORM BACTERIA	SM 9221E	BR	2/2/2012	15 4 0	2/4/2012	1500	PRES/ABS	PRESENT	ABSENT	1
HETEROTROPHIC PLATE COUNT	SM 9215C	BR	2/1/2012	1008	2/8/2012	1000	cfu/1ml	50	n/a	1

SAMPLE COMMENTS:

TOTAL COLIFORM BACTERIA IS A GENERAL INDICATOR OF THE BACTERIOLOGICAL.

QUALITY OF WATER, RESULTS ARE EXPRESSED AS THE NUMBER OF COLIFORM ORGANISMS PER
100 MILLILITERS OF WATER. THE US EPA AND THE PA DEP HAVE DETERMINED THAT

PUBLIC WATER SUPPLY SAMPLES IN WHICH COLIFORM BACTERIA ARE FOUND ARE

UNSUITABLE FOR DRINKING.

MCL / MAXIMUM CONTAMINANT LEVEL - THE MAXIMUM PERMISSIBLE LEVEL OF A CONTAMINANT IN WATER WHICH IS DELIVERED TO A PUBLIC WATER SYSTEM ESTABLISHED UNDER THE FEDERAL SAFE EDRINKING WATER ACT.

QL- THE MINIMUM DETECTABLE LEVEL OF A CONTAMINANT BASED ON THE METHOD USED.

REVIEWED BY: -- 4

John Scheatzle, President Page 1 of 1

1620 north main avenue • scranton, pennsylvania 18508 • ph.: 570-348-0775 • fax: 570-347-4139
PADEF Lab No: 35-00302 www.neelaboratories.com • neenvironmental@epix.net

ANALYTICAL REPORT

CLIENT: TECH LAW, INC SCOUT DELLAMIA (303) 809-7442

SAMPLE TYPE: DRINKING WATER

SAMPLE SOURCE: HW52 SAMPLE DATE: 01/31/12 SAMPLE TIME: 1522

SAMPLE COLLECTOR: CLIENT/BB

SAMPLE ID: 26674

PARAMETER	METHOD	LAB TECH	STA		E ANALYSIS ENI)	UNITS	RESULTS	MCL	QL.
			DATE	TIME	DATE	TIME				
TOTAL COLIFORM BACTERIA	SM 9222B	BR	2/1/2012	1604	2/2/2012	1530	cfu/100ml	<1	<1	1
HETEROTROPHIC PLATE COUNT	SM 9215C	BR	2/1/2012	1002	2/8/2012	1000	cfu/1ml	<1	n/a	1

SAMPLE COMMENTS:

TOTAL COLIFORM BACTERIA IS A GENERAL INDICATOR OF THE BACTERIOLOGICAL QUALITY OF WATER. RESULTS ARE EXPRESSED AS THE NUMBER OF COLIFORM ORGANISMS PER 100 MILLILITERS OF WATER. THE US EPA AND THE PA DEP HAVE DETERMINED THAT PUBLIC WATER SUPPLY SAMPLES IN WHICH COLIFORM BACTERIA ARE FOUND ARE UNSUITABLE FOR DRINKING.

MCL / MAXIMUM CONTAMINANT LEVEL - THE MAXIMUM PERMISSIBLE LEVEL OF A CONTAMINANT IN WATER WHICH IS DELIVERED TO A PUBLIC WATER SYSTEM ESTABLISHED UNDER THE FEDERAL SAFE EDRINKING WATER ACT.

QL- THE MINIMUM DETECTABLE LEVEL OF A CONTAMINANT BASED ON THE METHOD USED.

REVIEWED BY :

John Scheatzle, President

1620 north main avenue • scranton, pennsylvania 18508 • ph.: 570-348-0775 • fax: 570-347-4139 PADEP Lab No: 35-00302 www.neelaboratories.com • neenvironmental@epix.net

ANALYTICAL REPORT

CLIENT: TECH LAW, INC SCOUT DELLAMIA (303) 809-7442

SAMPLE TYPE: DRINKING WATER

SAMPLE SOURCE: FB08 SAMPLE DATE: 02/01/12 SAMPLE TIME: 1445

SAMPLE COLLECTOR: CLIENT/DJ

SAMPLE ID: 26780

PARAMETER	METHOD	LAB TECH		SAMPLE	ANALYSIS		UNITS	RESULTS	MCL	QL.
·			STA	RT	EN	D				
			DATE	TIME	DATE	TIME				
TOTAL COLIFORM BACTERIA	SM 9222B	BR	2/2/2012	1603	2/2/2012	1530	cfu/100ml	<1	<1	1
HETEROTROPHIC PLATE COUNT	SM 9215C	BR	2/2/2012	1006	2/9/2012	1000_	cfu/1ml	<1	n/a	1

SAMPLE COMMENTS:

TOTAL COLIFORM BACTERIA IS A GENERAL INDICATOR OF THE BACTERIOLOGICAL QUALITY OF WATER. RESULTS ARE EXPRESSED AS THE NUMBER OF COLIFORM ORGANISMS PER 100 MILLILITERS OF WATER. THE US EPA AND THE PA DEP HAVE DETERMINED THAT PUBLIC WATER SUPPLY SAMPLES IN WHICH COLIFORM BACTERIA ARE FOUND ARE UNSUITABLE FOR DRINKING.

MCL / MAXIMUM CONTAMINANT LEVEL - THE MAXIMUM PERMISSIBLE LEVEL OF A CONTAMINANT IN WATER WHICH IS DELIVERED TO A PUBLIC WATER SYSTEM ESTABLISHED UNDER THE FEDERAL SAFE EDRINKING WATER ACT.

QL- THE MINIMUM DETECTABLE LEVEL OF A CONTAMINANT BASED ON THE METHOD USED.

REVIEWED BY :

John Scheatzle, President

1620 north main avenue * scranton, pennsylvania 18508 * ph.; 570-348-0775 * fax: 570-347-4139 PADEP Lab No: 35-00302 www.neelaboratories.com * neenvironmental@epix.net

ANALYTICAL REPORT

CLIENT: TECH LAW, INC SCOUT DELLAMIA (303) 809-7442

SAMPLE TYPE: DRINKING WATER

SAMPLE SOURCE: HW32 SAMPLE DATE: 02/01/12 SAMPLE TIME: 1045

SAMPLE COLLECTOR: CLIENT/TS

SAMPLE ID: 26743

PARAMETER	METHOD	LAB TECH		SAMPLE	E ANALYSIS		UNITS	RESULTS	MCL	QL
			STA	RT	EN	D				
	 		DATE	TIME	DATE	TIME				
TOTAL COLIFORM BACTERIA	SM 9222B	BR	2/1/2012	1637	2/2/2012	1530	cfu/100ml	<1	<1	1
HETEROTROPHIC PLATE COUNT	SM 9215C	BR	2/1/2012	1407	2/8/2012	1000	cfu/1mi	<1	n/a	1

SAMPLE COMMENTS:

TOTAL COLIFORM BACTERIA IS A GENERAL INDICATOR OF THE BACTERIOLOGICAL.

QUALITY OF WATER. RESULTS ARE EXPRESSED AS THE NUMBER OF COLIFORM ORGANISMS PER

100 MILLILITERS OF WATER. THE US EPA AND THE PA DEP HAVE DETERMINED THAT

PUBLIC WATER SUPPLY SAMPLES IN WHICH COLIFORM BACTERIA ARE FOUND ARE

UNSUITABLE FOR DRINKING.

MCL / MAXIMUM CONTAMINANT LEVEL - THE MAXIMUM PERMISSIBLE LEVEL OF A CONTAMINANT IN WATER WHICH IS DELIVERED TO A PUBLIC WATER SYSTEM ESTABLISHED UNDER THE FEDERAL SAFE EDRINKING WATER ACT.

QL- THE MINIMUM DETECTABLE LEVEL OF A CONTAMINANT BASED ON THE METHOD USED.

REVIEWED BY:

John Scheatzle, President

Page 1 of 1

1620 north main avenue * scranton, pennsylvania 18508 * ph.: 570-348-0775 * fax: 570-347-4139 PADEP Lab No: 35-00302 www.neelaboratories.com * neenvironmental@epix.net

ANALYTICAL REPORT

CLIENT: TECH LAW, INC SCOUT DELLAMIA (303) 809-7442

SAMPLE TYPE: DRINKING WATER

SAMPLE SOURCE: HW32-P SAMPLE DATE: 02/01/12 SAMPLE TIME: 1050

SAMPLE COLLECTOR: CLIENT/DJ

SAMPLE ID: 26745

PARAMETER	METHOD	LAB TECH		SAMPLE	ANALYSIS		UNITS	RESULTS	MCL	QL
			STA	RT	ENI)				
			DATE	TIME	DATE	TIME	<u></u>			
TOTAL COLIFORM BACTERIA	SM 9222B	BR	2/1/2012	1639	2/2/2012	1530	cfu/100ml	<1	<1	1
HETEROTROPHIC PLATE COUNT	SM 9215C	BR	2/1/2012	1411	2/8/2012	1000	cfu/1ml	35	n/a	1

SAMPLE COMMENTS:

TOTAL COLIFORM BACTERIA IS A GENERAL INDICATOR OF THE BACTERIOLOGICAL QUALITY OF WATER. RESULTS ARE EXPRESSED AS THE NUMBER OF COLIFORM ORGANISMS PER 100 MILLILITERS OF WATER. THE US EPA AND THE PA DEP HAVE DETERMINED THAT PUBLIC WATER SUPPLY SAMPLES IN WHICH COLIFORM BACTERIA ARE FOUND ARE UNSUITABLE FOR DRINKING.

MCL / MAXIMUM CONTAMINANT LEVEL - THE MAXIMUM PERMISSIBLE LEVEL OF A CONTAMINANT IN WATER WHICH IS DELIVERED TO A PUBLIC WATER SYSTEM ESTABLISHED UNDER THE FEDERAL SAFE EDRINKING WATER ACT.

QL- THE MINIMUM DETECTABLE LEVEL OF A CONTAMINANT BASED ON THE METHOD USED.

REVIEWED BY:

John Scheatzle, President

Page 1 of 1

PADEP Lab No: 35-00302

1620 north main avenue • scranton, pennsylvania 18508 • ph.: 570-348-0775 • fax: 570-347-4139 www.neelaboratories.com • neenvironmental@epix.net

ANALYTICAL REPORT

CLIENT: TECH LAW, INC. SCOUT DELLAMIA (303) 809-7442

SAMPLE TYPE: DRINKING WATER

SAMPLE SOURCE: HW33 SAMPLE DATE: 02/01/12 SAMPLE TIME: 1049

SAMPLE COLLECTOR: CLIENT/MF

SAMPLE ID: 26744

PARAMETER	METHOD	LAB TECH		SAMPLE	E ANALYSIS		UNITS	REŞULTS	MCL	QL
			STA	RT	ENE)				
			DATE	TIME	DATE	TIME				
TOTAL COLIFORM BACTERIA	SM 9222B	BŘ	2/1/2012	1638	2/2/2012	1530	cfu/100ml	<1	<1	1
HETEROTROPHIC PLATE COUNT	SM 9215C	BR	2/1/2012	1409	2/8/2012	1000	cfu/1ml	43	n/a	1

SAMPLE COMMENTS:

TOTAL COLIFORM BACTERIA IS A GENERAL INDICATOR OF THE BACTERIOLOGICAL QUALITY OF WATER, RESULTS ARE EXPRESSED AS THE NUMBER OF COLIFORM ORGANISMS PER 100 MILLILITERS OF WATER. THE US EPA AND THE PAIDEP HAVE DETERMINED THAT PUBLIC WATER SUPPLY SAMPLES IN WHICH COLIFORM BACTERIA ARE FOUND ARE UNSUITABLE FOR DRINKING.

MCL / MAXIMUM CONTAMINANT LEVEL - THE MAXIMUM PERMISSIBLE LEVEL OF A CONTAMINANT IN WATER WHICH IS DELIVERED TO A PUBLIC WATER SYSTEM ESTABLISHED UNDER THE FEDERAL SAFE EDRINKING WATER ACT.

QL- THE MINIMUM DETECTABLE LEVEL OF A CONTAMINANT BASED ON THE METHOD USED.

John Scheatzle, President

1620 north main avenue • scranton, pennsylvania 18508 • ph.: 570-348-0775 • fax: 570-347-4139
PADEP Lab No: 35-00302 www.neelaboratories.com • neenvironmental@epix.net

ANALYTICAL REPORT

CLIENT: TECH LAW, INC SCOUT DELLAMIA (303) 809-7442

SAMPLE TYPE: DRINKING WATER

SAMPLE SOURCE: HW33A-P SAMPLE DATE: 02/01/12 SAMPLE TIME: 1042

SAMPLE COLLECTOR: CLIENT/DJ

SAMPLE ID: 26742

PARAMETER	METHOD	LAB TECH		SAMPLE	ANALYSIS		UNITS	RESULTS	MCL	QL
			STA	RT.	ENI)				
			DATÉ	TIME	DATE	TIME				
TOTAL COLIFORM BACTERIA	SM 9222B	BR	2/1/2012	1636	2/2/2012	1530	cfu/100mi	<1	<1	1
HETEROTROPHIC PLATE COUNT	SM 9215C	BR	2/1/2012	1405	2/8/2012	1000	cfu/1ml	65	n/a	1

SAMPLE COMMENTS:

TOTAL COLIFORM BACTERIA IS A GENERAL INDICATOR OF THE BACTERIOLOGICAL QUALITY OF WATER. RESULTS ARE EXPRESSED AS THE NUMBER OF COLIFORM ORGANISMS PER 100 MILLILITERS OF WATER. THE US EPA AND THE PA DEP HAVE DETERMINED THAT PUBLIC WATER SUPPLY SAMPLES IN WHICH COLIFORM BACTERIA ARE FOUND ARE UNSUITABLE FOR DRINKING.

MCL / MAXIMUM CONTAMINANT LEVEL - THE MAXIMUM PERMISSIBLE LEVEL OF A CONTAMINANT IN WATER WHICH IS DELIVERED TO A PUBLIC WATER SYSTEM ESTABLISHED UNDER THE FEDERAL SAFE EDRINKING WATER ACT.

QL- THE MINIMUM DETECTABLE LEVEL OF A CONTAMINANT BASED ON THE METHOD USED.

REVIEWED BY : ___

John Scheatzle, President

Page 1 of 1

1620 north main avenue * scranton, pennsylvania 18508 * ph.; 570-348-0775 * fax; 570-347-4139 PADEP Lab No: 35-00302 www.neelaboratories.com * neenvironmentat@epix.net

ANALYTICAL REPORT

CLIENT: TECH LAW, INC SCOUT DELLAMIA (303) 809-7442

SAMPLE TYPE: DRINKING WATER

SAMPLE SOURCE: HW33B-P SAMPLE DATE: 02/01/12 SAMPLE TIME: 1142

SAMPLE COLLECTOR: CLIENT/DJ

SAMPLE ID: 26746

PARAMETER	METHOD	LAB TECH		SAMPLE	ANALYSIS		UNITS	RESULTS	MCL	QL
			STA	RT	· EN)				
			DATE	TIME	DATE	TIME				
TOTAL COLIFORM BACTERIA	SM 9222B	BR	2/1/2012	1640	2/2/2012	1530	cfu/100ml	<1	<1	1
HETEROTROPHIC PLATE COUNT	SM 9215C	BR	2/1/2012	1413	2/8/2012	1000	cfu/1ml	74	n/a	1

SAMPLE COMMENTS:

TOTAL COLIFORM BACTERIA IS A GENERAL INDICATOR OF THE BACTERIOLOGICAL QUALITY OF WATER. RESULTS ARE EXPRESSED AS THE NUMBER OF COLIFORM ORGANISMS PER 100 MILLILITERS OF WATER. THE US EPA AND THE PA DEP HAVE DETERMINED THAT PUBLIC WATER SUPPLY SAMPLES IN WHICH COLIFORM BACTERIA ARE FOUND ARE UNSUITABLE FOR DRINKING.

MCL / MAXIMUM CONTAMINANT LEVEL - THE MAXIMUM PERMISSIBLE LEVEL OF A CONTAMINANT IN WATER WHICH IS DELIVERED TO A PUBLIC WATER SYSTEM ESTABLISHED UNDER THE FEDERAL SAFE EDRINKING WATER ACT.

QL- THE MINIMUM DETECTABLE LEVEL OF A CONTAMINANT BASED ON THE METHOD USED.

REVIEWED BY:

John Scheatzle, President

Page 1 of 1

1620 north main avenue • scranton, pennsylvania 18508 • ph.: 570-346-0775 • fax: 570-347-4139
PADEP Lab No: 35-00302 www.neelaboratories.com • neenvironmental@epix.net

ANALYTICAL REPORT

CLIENT: TECH LAW, INC SCOUT DELLAMIA (303) 809-7442

SAMPLE TYPE: DRINKING WATER

SAMPLE SOURCE: HW34A SAMPLE DATE: 02/01/12 SAMPLE TIME: 1547

SAMPLE COLLECTOR: CLIENT/TS

SAMPLE ID: 26781

PARAMETER	METHOD	LAB TECH		SAMPLE	E ANALYSIS		UNITS	RESULTS	MCL	QL
			STA	RT	ENI	D				
			DATE	TIME	DATE	TIME				
TOTAL COLIFORM BACTERIA	SM 9222B	BR	2/2/2012	1601	2/2/2012	1530	cfu/100ml	<1	<1	1
HETEROTROPHIC PLATE COUNT	SM 9215C	BR	2/2/2012	1000	2/9/2012	1000	cfu/1ml	10	n/a	1

SAMPLE COMMENTS:

TOTAL COLIFORM BACTERIA IS A GENERAL INDICATOR OF THE BACTERIOLOGICAL QUALITY OF WATER. RESULTS ARE EXPRESSED AS THE NUMBER OF COLIFORM ORGANISMS PER 100 MILLILITERS OF WATER. THE US EPA AND THE PA DEP HAVE DETERMINED THAT PUBLIC WATER SUPPLY SAMPLES IN WHICH COLIFORM BACTERIA ARE FOUND ARE UNSUITABLE FOR DRINKING.

MCL / MAXIMUM CONTAMINANT LEVEL - THE MAXIMUM PERMISSIBLE LEVEL OF A CONTAMINANT IN WATER WHICH IS DELIVERED TO A PUBLIC WATER SYSTEM ESTABLISHED UNDER THE FEDERAL SAFE EDRINKING WATER ACT.

QL- THE MINIMUM DETECTABLE LEVEL OF A CONTAMINANT BASED ON THE METHOD USED.

REVIEWED BY:

John Scheatzle, President

1620 north main avenue • scranton, pennsylvania 18508 • ph.: 570-348-0775 • fax: 570-347-4199 PADEP Lab No: 35-00302 www.neelaboratories.com • neenvironmental@epix.net

ANALYTICAL REPORT

CLIENT: TECH LAW, INC SCOUT DELLAMIA (303) 809-7442

SAMPLE TYPE: DRINKING WATER

SAMPLE SOURCE: HW34A-P SAMPLE DATE: 02/01/12

SAMPLE TIME: 1555

SAMPLE COLLECTOR: CLIENT/DJ

SAMPLE ID: 26782

PARAMETER	METHOD	LAB TECH	STA		E ANALYSIS ENI)	UNITS	RESULTS	MCL	QL
			DATE	TIME	DATE	TIME				
TOTAL COLIFORM BACTERIA	SM 9222B	BR	2/2/2012	1602	2/2/2012	1530	cfu/100ml	<1	<1	1
HETEROTROPHIC PLATE COUNT	SM 9215C	BR	2/2/2012	1003	2/9/2012	1000	cfu/1ml	<1	n/a	1

SAMPLE COMMENTS:

TOTAL COLIFORM BACTERIA IS A GENERAL INDICATOR OF THE BACTERIOLOGICAL QUALITY OF WATER. RESULTS ARE EXPRESSED AS THE NUMBER OF COLIFORM ORGANISMS PER 100 MILLILITERS OF WATER. THE US EPA AND THE PA DEP HAVE DETERMINED THAT PUBLIC WATER SUPPLY SAMPLES IN WHICH COLIFORM BACTERIA ARE FOUND ARE UNSUITABLE FOR DRINKING.

MCL / MAXIMUM CONTAMINANT LEVEL - THE MAXIMUM PERMISSIBLE LEVEL OF A CONTAMINANT IN WATER WHICH IS DELIVERED TO A PUBLIC WATER SYSTEM ESTABLISHED UNDER THE FEDERAL SAFE EDRINKING WATER ACT.

QL-THE MINIMUM DETECTABLE LEVEL OF A CONTAMINANT BASED ON THE METHOD USED.

REVIEWED BY:

John Scheatzle, President

Page 1 of 1

1620 north main avenue • scranton, pennsylvania 16508 • ph.: 570-348-0775 • fax: 570-347-4139 PADEP Lab No: 35-00302 www.neelaboratories.com • neenvironmental@epix.net

ANALYTICAL REPORT

CLIENT: TECH LAW, INC SCOUT DELLAMIA (303) 809-7442

SAMPLE TYPE: DRINKING WATER

SAMPLE SOURCE: FB09 SAMPLE DATE: 02/02/12 SAMPLE TIME: 1015

SAMPLE COLLECTOR: CLIENT/DJ

SAMPLE ID: 26816

PARAMETER	METHOD	LAB TECH	STA		E ANALYSIS ENI	;)	UNITS	RESULTS	MCL	QL
			DATE	TIME	DATE	TIME				
TOTAL COLIFORM BACTERIA	SM 9222B	BR	2/3/2012	1506	2/4/2012	1400	cfu/100ml	<1	<1	1
HETEROTROPHIC PLATE COUNT	SM 9215C	BR	2/3/2012	0938	2/10/2012	1000	cfu/1ml	<1	n/a	1

SAMPLE COMMENTS:

TOTAL COLIFORM BACTERIA IS A GENERAL INDICATOR OF THE BACTERIOLOGICAL QUALITY OF WATER. RESULTS ARE EXPRESSED AS THE NUMBER OF COLIFORM ORGANISMS PER 100 MILLILITERS OF WATER. THE US EPA AND THE PA DEP HAVE DETERMINED THAT PUBLIC WATER SUPPLY SAMPLES IN WHICH COLIFORM BACTERIA ARE FOUND ARE UNSUITABLE FOR DRINKING.

MCL / MAXIMUM CONTAMINANT LEVEL - THE MAXIMUM PERMISSIBLE LEVEL OF A CONTAMINANT IN WATER WHICH IS DELIVERED TO A PUBLIC WATER SYSTEM ESTABLISHED UNDER THE FEDERAL SAFE EDRINKING WATER ACT.

QL- THE MINIMUM DETECTABLE LEVEL OF A CONTAMINANT BASED ON THE METHOD USED.

REVIEWED BY:

John Scheatzle, President

Page 1 of 1

1620 north main avenue • scranton, pennsylvania 18508 • ph.: 570-348-0775 • fax: 570-347-4139 PADEP Lab No: 35-00302 www.neelaboratories.com • neenvironmental@epix.net

ANALYTICAL REPORT

CLIENT: TECH LAW, INC SCOUT DELLAMIA (303) 809-7442

SAMPLE TYPE: DRINKING WATER

SAMPLE SOURCE: HW40 SAMPLE DATE: 02/02/12 SAMPLE TIME: 1539

SAMPLE COLLECTOR: CLIENT/TS

SAMPLE ID: 26810

PARAMETER	METHOD	LAB TECH		SAMPLE	E ANALYSIS		UNITS	RESULTS	MCL	QL
			STA	RT	EN	כ				
			DATE	TIME	DATE	TIME				
TOTAL COLIFORM BACTERIA	SM 9222B	BR	2/3/2012	1503	2/4/2012	1400	cfu/100ml	<1	<1	1
HETEROTROPHIC PLATE COUNT	SM 9215C	BR	2/3/2012	0932	2/10/2012	1000	cfu/1ml	40	n/a	1

SAMPLE COMMENTS:

TOTAL COLIFORM BACTERIA IS A GENERAL INDICATOR OF THE BACTERIOLOGICAL QUALITY OF WATER. RESULTS ARE EXPRESSED AS THE NUMBER OF COLIFORM ORGANISMS PER 100 MILLILITERS OF WATER. THE US EPA AND THE PA DEP HAVE DETERMINED THAT PUBLIC WATER SUPPLY SAMPLES IN WHICH COLIFORM BACTERIA ARE FOUND ARE UNSUITABLE FOR DRINKING.

MCL / MAXIMUM CONTAMINANT LEVEL - THE MAXIMUM PERMISSIBLE LEVEL OF A CONTAMINANT IN WATER WHICH IS DELIVERED TO A PUBLIC WATER SYSTEM ESTABLISHED UNDER THE FEDERAL SAFE EDRINKING WATER ACT.

QL- THE MINIMUM DETECTABLE LEVEL OF A CONTAMINANT BASED ON THE METHOD USED.

REVIEWED BY:

John Scheatzle, President

Page 1 of 1

1620 north main avenue • scranton, pennsylvania 18508 • ph.: 570-348-0775 • fax: 570-347-4139
PADEP Leb No: 35-00302 www.neelaboratories.com • neenvironmental@epix.net

ANALYTICAL REPORT

CLIENT: TECH LAW, INC SCOUT DELLAMIA (303) 809-7442

SAMPLE TYPE: DRINKING WATER

SAMPLE SOURCE: HW40-P SAMPLE DATE: 02/02/12 SAMPLE TIME: 1544

SAMPLE COLLECTOR: CLIENT/DJ

SAMPLE ID: 26817

PARAMETER	METHOD	LAB TECH		UNITS	RESULTS	MCL	QL			
			STA	RT		;				
			DATE	TIME	DATE	TIME				
TOTAL COLIFORM BACTERIA	SM 9222B	BR	2/3/2012	1508	2/4/2012	1400	cfu/100ml	< 1	<1	1
HETEROTROPHIC PLATE COUNT	SM 9215C	BR	2/3/2012	0942	2/10/2012	1000	cfu/1mi	12	n/a	1

SAMPLE COMMENTS:

TOTAL COLIFORM BACTERIA IS A GENERAL INDICATOR OF THE BACTERIOLOGICAL QUALITY OF WATER. RESULTS ARE EXPRESSED AS THE NUMBER OF COLIFORM ORGANISMS PER 100 MILLILITERS OF WATER. THE US EPA AND THE PA DEP HAVE DETERMINED THAT PUBLIC WATER SUPPLY SAMPLES IN WHICH COLIFORM BACTERIA ARE FOUND ARE UNSUITABLE FOR DRINKING.

MCL / MAXIMUM CONTAMINANT LEVEL - THE MAXIMUM PERMISSIBLE LEVEL OF A CONTAMINANT IN WATER WHICH IS DELIVERED TO A PUBLIC WATER SYSTEM ESTABLISHED UNDER THE FEDERAL SAFE EDRINKING WATER ACT.

QL- THE MINIMUM DETECTABLE LEVEL OF A CONTAMINANT BASED ON THE METHOD USED.

REVIEWED BY :

John Scheatzle, President

1629 north main avenue • scranton, pennsylvania 18508 • ph.; 570-348-0775 • tax: 570-347-4139 PADEP Lab No: 35-00302 www.neelaboratories.com • neenvironmental@epix.net

ANALYTICAL REPORT

CLIENT: TECH LAW, INC SCOUT DELLAMIA (303) 809-7442

SAMPLE TYPE: DRINKING WATER

SAMPLE SOURCE: HW41 SAMPLE DATE: 02/02/12 SAMPLE TIME: 1612

SAMPLE COLLECTOR: CLIENT/DJ

SAMPLE ID: 26815

PARAMETER	METHOD	LAB TECH		SAMPLE	E ANALYSIS		UNITS	RESULTS	MCL	QL
			STA	RT	END)				
			DATE	TIME	DATÉ	TIME				ļ
TOTAL COLIFORM BACTERIA	SM 9222B	BR	2/3/2012	1509	2/4/2012	1400	cfu/100ml	<1	<1	1
HETEROTROPHIC PLATE COUNT	SM 9215C	BR	2/3/2012	0944	2/10/2012	1000	cfu/1ml	49	n/a	1

SAMPLE COMMENTS:

TOTAL COLFORM BACTERIA IS A GENERAL INDICATOR OF THE BACTERIOLOGICAL QUALITY OF WATER. RESULTS ARE EXPRESSED AS THE NUMBER OF COLIFORM ORGANISMS PER 100 MILLILITERS OF WATER. THE US EPA AND THE PA DEP HAVE DETERMINED THAT PUBLIC WATER SUPPLY SAMPLES IN WHICH COLIFORM BACTERIA ARE FOUND ARE UNSUITABLE FOR DRINKING.

MCL / MAXIMUM CONTAMINANT LEVEL - THE MAXIMUM PERMISSIBLE LEVEL OF A CONTAMINANT IN WATER WHICH IS DELIVERED TO A PUBLIC WATER SYSTEM ESTABLISHED UNDER THE FEDERAL SAFE EDRINKING WATER ACT.

QL- THE MINIMUM DETECTABLE LEVEL OF A CONTAMINANT BASED ON THE METHOD USED.

REVIEWED BY:

John Scheatzle, President

Page 1 of 1

1620 north main avenue • scranton, pennsylvania 18508 • ph.: 570-348-0775 • fax: 570-347-4139 PADEP Lab No: 35-00302 www.neelaboratories.com • neenvironmental@epix.net

ANALYTICAL REPORT

CLIENT: TECH LAW, INC SCOUT DELLAMIA (303) 809-7442

SAMPLE TYPE: DRINKING WATER

SAMPLE SOURCE: HW41-P SAMPLE DATE: 02/02/12

SAMPLE TIME: 1554

SAMPLE COLLECTOR: CLIENT/MF

SAMPLE ID: 26809

PARAMETER	METHOD	LAB TECH						RESULTS	MCL.	QL
	,		STA	RT	END)	1			l
			DATE	TIME	DATE	TIME				
TOTAL COLIFORM BACTERIA	SM 9222B	BR	2/3/2012	1505	2/4/2012	1400	cfu/100ml	<1	<1	1
HETEROTROPHIC PLATE COUNT	SM 9215C	BR	2/3/2012	0936	2/10/2012	1000	cfu/1ml	53	n/a	1

SAMPLE COMMENTS:

TOTAL COLIFORM BACTERIA IS A GENERAL INDICATOR OF THE BACTERIOLOGICAL QUALITY OF WATER, RESULTS ARE EXPRESSED AS THE NUMBER OF COLIFORM ORGANISMS PER 100 MILLILITERS OF WATER. THE US EPA AND THE PA DEP HAVE DETERMINED THAT PUBLIC WATER SUPPLY SAMPLES IN WHICH COLIFORM BACTERIA ARE FOUND ARE UNSUITABLE FOR DRINKING.

MCL / MAXIMUM CONTAMINANT LEVEL - THE MAXIMUM PERMISSIBLE LEVEL OF A CONTAMINANT IN WATER WHICH IS DELIVERED TO A PUBLIC WATER SYSTEM ESTABLISHED UNDER THE FEDERAL SAFE EDRINKING WATER ACT.

QL- THE MINIMUM DETECTABLE LEVEL OF A CONTAMINANT BASED ON THE METHOD USED.

REVIEWED BY:

John Scheatzle, President

Page 1 of 1

1620 north main avenue • screnton, pennsylvania 18508 • ph.: 570-348-0775 • fax: 570-347-4139 PADEP Lab No: 35-00302 www.neetaboratories.com • neenvironmental@epix.net

ANALYTICAL REPORT

CLIENT: TECH LAW, INC SCOUT DELLAMIA (303) 809-7442

SAMPLE TYPE: DRINKING WATER

SAMPLE SOURCE: HW42 SAMPLE DATE: 02/02/12 SAMPLE TIME: 1028

SAMPLE COLLECTOR: CLIENT/BB

SAMPLE ID: 26813

PARAMETER	METHOD	LAB TECH	STA	SAMPLE .RT	UNITS	RESULTS	MCL	QL.		
			DATE	TIME	DATE	TIME				
TOTAL COLIFORM BACTERIA	SM 9222B	BR	2/3/2012	1504	2/4/2012	1400	cfu/100ml	<1	<1	1
HETEROTROPHIC PLATE COUNT	SM 9215C	BR	2/3/2012	0934	2/10/2012	1000	cfu/1ml	37	n/a	1

SAMPLE COMMENTS:

TOTAL COLIFORM BACTERIA IS A GENERAL INDICATOR OF THE BACTERIOLOGICAL QUALITY OF WATER. RESULTS ARE EXPRESSED AS THE NUMBER OF COLIFORM ORGANISMS PER 100 MILLILITERS OF WATER. THE US EPA AND THE PA DEP HAVE DETERMINED THAT PUBLIC WATER SUPPLY SAMPLES IN WHICH COLIFORM BACTERIA ARE FOUND ARE UNSUITABLE FOR DRINKING.

MCL / MAXIMUM CONTAMINANT LEVEL - THE MAXIMUM PERMISSIBLE LEVEL OF A CONTAMINANT IN WATER WHICH IS DELIVERED TO A PUBLIC WATER SYSTEM ESTABLISHED UNDER THE FEDERAL SAFE EDRINKING WATER ACT.

QL- THE MINIMUM DETECTABLE LEVEL OF A CONTAMINANT BASED ON THE METHOD USED.

REVIEWED BY:

John Scheatzle, President

Page 1 of 1

1620 north main avenue • scranton, pennsylvania 18508 • ph.: 570-348-0775 • fax: 570-347-4139 PADEP Lab No: 35-00302 www.neetaboratories.com • neenvironmentat@epix.net

ANALYTICAL REPORT

CLIENT: TECH LAW, INC SCOUT DELLAMIA (303) 809-7442

SAMPLE TYPE: DRINKING WATER

SAMPLE SOURCE: HW42Z SAMPLE DATE: 02/02/12 SAMPLE TIME: 1029

SAMPLE COLLECTOR: CLIENT/BB

SAMPLE ID: 26814

PARAMETER	METHOD	LAB TECH		UNITS	RESULTS	MCL	QL			
			STA	RT	END)				
			DATE	TIME	DATE	TIME				X.
TOTAL COLIFORM BACTERIA	SM 9222B	BR	2/3/2012	1502	2/4/2012	1400	cfu/100ml	<1	<1	1
HETEROTROPHIC PLATE COUNT	SM 9215C	BR	2/3/2012	0930	2/10/2012	1000	cfu/1ml	37	n/a	1

SAMPLE COMMENTS:

TOTAL COLIFORM BACTERIA IS A GENERAL INDICATOR OF THE BACTERIOLOGICAL QUALITY OF WATER. RESULTS ARE EXPRESSED AS THE NUMBER OF COLIFORM ORGANISMS PER 100 MILLILITERS OF WATER. THE US EPA AND THE PA DEP HAVE DETERMINED THAT PUBLIC WATER SUPPLY SAMPLES IN WHICH COLIFORM BACTERIA ARE FOUND ARE UNSUITABLE FOR DRINKING.

MCL / MAXIMUM CONTAMINANT LEVEL - THE MAXIMUM PERMISSIBLE LEVEL OF A CONTAMINANT IN WATER WHICH IS DELIVERED TO A PUBLIC WATER SYSTEM ESTABLISHED UNDER THE FEDERAL SAFE EDRINKING WATER ACT.

QL- THE MINIMUM DETECTABLE LEVEL OF A CONTAMINANT BASED ON THE METHOD USED.

REVIEWED BY:

John Scheatzle, President

Page 1 of 1

1620 north main avenue • scranton, pennsylvania 18508 • ph.: 570-348-0775 • fax: 570-347-4139 PADEP Lab No: 35-00302 www.neelaboratories.com • neenvironmental@epix.net

ANALYTICAL REPORT

CLIENT: TECH LAW, INC SCOUT DELLAMIA (303) 809-7442

SAMPLE TYPE: DRINKING WATER

SAMPLE SOURCE: HW46 SAMPLE DATE: 02/02/12 SAMPLE TIME: 1139

SAMPLE COLLECTOR: CLIENT/MF

SAMPLE ID: 26812

PARAMETER	METHOD	LAB TEÇH	ECH SAMPLE ANALYSIS					RESULTS	MCL.	QL
			STA	RT	EN)				1
			DATE	TIME	DATE	TIME				
	•									
TOTAL COLIFORM BACTERIA	SM 9222B	BR	2/3/2012	1507	2/4/2012	1400	cfu/100ml	<1	<1	1
HETEROTROPHIC PLATE COUNT	SM 9215C	BR	2/3/2012	0940	2/10/2012	1000	cfu/1ml	43	n/a	1

SAMPLE COMMENTS:

TOTAL COLIFORM BACTERIA IS A GENERAL INDICATOR OF THE BACTERIOLOGICAL QUALITY OF WATER, RESULTS ARE EXPRESSED AS THE NUMBER OF COLIFORM ORGANISMS PER 100 MILLILITERS OF WATER, THE US EPA AND THE PA DEP HAVE DETERMINED THAT PUBLIC WATER SUPPLY SAMPLES IN WHICH COLIFORM BACTERIA ARE FOUND ARE UNSUITABLE FOR DRINKING.

MCL / MAXIMUM CONTAMINANT LEVEL - THE MAXIMUM PERMISSIBLE LEVEL OF A CONTAMINANT IN WATER WHICH IS DELIVERED TO A PUBLIC WATER SYSTEM ESTABLISHED UNDER THE FEDERAL SAFE EDRINKING WATER ACT.

QL- THE MINIMUM DETECTABLE LEVEL OF A CONTAMINANT BASED ON THE METHOD USED.

REVIEWED BY:

John Scheatzle, President

Page 1 of 1

1620 north main avenue • scranton, pennsylvania 18508 • ph.: 570-348-0775 • fax: 570-347-4139
PADEP Lab No: 35-00302 www.neelaboratories.com • neenvironmental@epix.net

ANALYTICAL REPORT

CLIENT: TECH LAW, INC SCOUT DELLAMIA (303) 809-7442

SAMPLE TYPE: DRINKING WATER

SAMPLE SOURCE: HW46-P SAMPLE DATE: 02/02/12 SAMPLE TIME: 1124

SAMPLE COLLECTOR: CLIENT/DJ

SAMPLE ID: 26811

PARAMETER	METHOD	LAB TECH		SAMPLE	E ANALYSIS		UNITS	RESULTS	MCL	QL
			STA	RT	ENI)				
			DATE	TIME	DATE	TIME				
TOTAL COLIFORM BACTERIA	SM 9222B	BR	2/3/2012	1510	2/4/2012	1400	cfu/100ml	<1	<1	1
HETEROTROPHIC PLATE COUNT	SM 9215C	BR	2/3/2012	0945	2/10/2012	1000	cfu/1ml	18	n/a	1

SAMPLE COMMENTS:

TOTAL COLIFORM BACTERIA IS A GENERAL INDICATOR OF THE BACTERIOLOGICAL QUALITY OF WATER. RESULTS ARE EXPRESSED AS THE NUMBER OF COLIFORM ORGANISMS PER 100 MILLILITERS OF WATER. THE US EPA AND THE PA DEP HAVE DETERMINED THAT PUBLIC WATER SUPPLY SAMPLES IN WHICH COLIFORM BACTERIA ARE FOUND ARE UNSUITABLE FOR DRINKING.

MCL / MAXIMUM CONTAMINANT LEVEL - THE MAXIMUM PERMISSIBLE LEVEL OF A CONTAMINANT IN WATER WHICH IS DELIVERED TO A PUBLIC WATER SYSTEM ESTABLISHED UNDER THE FEDERAL SAFE EDRINKING WATER ACT.

QL- THE MINIMUM DETECTABLE LEVEL OF A CONTAMINANT BASED ON THE METHOD USED.

REVIEWED BY:

John Scheatzle, President

Page 1 of 1

1620 north main avenue • scranton, pennsylvania 18508 • ph.: 570-348-0775 • fax: 570-347-4139
PADEP Lab No: 35-00302 www.neelaboratories.com • neenvironmental@epix.net

ANALYTICAL REPORT

CLIENT: TECH ŁAW, INC SCOUT DELLAMIA (303) 809-7442

SAMPLE TYPE: DRINKING WATER

SAMPLE SOURCE: FB10 SAMPLE DATE: 02/03/12 SAMPLE TIME: 1409

SAMPLE COLLECTOR: CLIENT/MF

SAMPLE ID: 26828

PARAMETÉR	METHOD	LAB TECH	• · · · · · · · · · · · · · · · · · · ·	SAMPLE	E ANALYSIS		UNITS	RESULTS	MCL	QL.
			STA	RT	ENI)				
			DATE	TIME	DATE	TIME				
TOTAL COLIFORM BACTERIA	SM 9222B	BR	2/3/2012	2031	2/4/2012	1900	cfu/100ml	<1	<1	1
HETEROTROPHIC PLATE COUNT	SM 9215C	BR	2/3/2012	2000	2/10/2012	1900	cfu/1ml	<1	n/a	1

SAMPLE COMMENTS:

TOTAL COLIFORM BACTERIA IS A GENERAL INDICATOR OF THE BACTERIOLOGICAL QUALITY OF WATER. RESULTS ARE EXPRESSED AS THE NUMBER OF COLIFORM ORGANISMS PER 100 MILLILITERS OF WATER. THE US EPA AND THE PA DEP HAVE DETERMINED THAT PUBLIC WATER SUPPLY SAMPLES IN WHICH COLIFORM BACTERIA ARE FOUND ARE UNSUITABLE FOR DRINKING.

MCL / MAXIMUM CONTAMINANT LEVEL - THE MAXIMUM PERMISSIBLE LEVEL OF A CONTAMINANT IN WATER WHICH IS DELIVERED TO A PUBLIC WATER SYSTEM ESTABLISHED UNDER THE FEDERAL SAFE EDRINKING WATER ACT.

QL- THE MINIMUM DETECTABLE LEVEL OF A CONTAMINANT BASED ON THE METHOD USED.

REVIEWED BY:

John Scheatzle, President

Page 1 of 1

1620 north main avenue • scranton, pennsylvania 18508 • ph.: 570-348-0775 • fax: 570-347-4139 PADEP Lab No: 35-00302 www.neelaboratories.com • neenvironmentat@epix.net

ANALYTICAL REPORT

CLIENT: TECH LAW, INC SCOUT DELLAMIA (303) 809-7442

SAMPLE TYPE: DRINKING WATER

SAMPLE SOURCE: HW09 SAMPLE DATE: 02/03/12 SAMPLE TIME: 1520

SAMPLE COLLECTOR: CLIENT/TS

SAMPLE ID: 26834

PARAMETER	METHOD	LAB TECH		UNITS	RESULTS	MCL.	QL			
			STA	RT	ENI)				
			DATE	TIME	DATE	TIME				
TOTAL COLIFORM BACTERIA	SM 9222B	BR	2/3/2012	2037	2/4/2012	1900	cfu/100ml	<1	<1	1
HETEROTROPHIC PLATE COUNT	SM 9215C	BR	2/3/2012	2012	2/10/2012	1900	cfu/1ml	33	n/a	1

SAMPLE COMMENTS:

TOTAL COLIFORM BACTERIA IS A GENERAL INDICATOR OF THE BACTERIOLOGICAL QUALITY OF WATER. RESULTS ARE EXPRESSED AS THE NUMBER OF COLIFORM ORGANISMS PER 100 MILLILITERS OF WATER. THE US EPA AND THE PA DEP HAVE DETERMINED THAT PUBLIC WATER SUPPLY SAMPLES IN WHICH COLIFORM BACTERIA ARE FOUND ARE UNSUITABLE FOR DRINKING.

MCL / MAXIMUM CONTAMINANT LEVEL - THE MAXIMUM PERMISSIBLE LEVEL OF A CONTAMINANT IN WATER WHICH IS DELIVERED TO A PUBLIC WATER SYSTEM ESTABLISHED UNDER THE FEDERAL SAFE EDRINKING WATER ACT.

QL- THE MINIMUM DETECTABLE LEVEL OF A CONTAMINANT BASED ON THE METHOD USED.

REVIEWED BY:

John Scheatzle, President

Page 1 of 1

1620 north main avenue • scranton, pennsylvania 18508 • ph.: 570-848-0775 • fax: 570-347-4139 PADEP Lab No: 35-00302 www.neelaboratories.com • neenvironmental@epix.net

ANALYTICAL REPORT

CLIENT: TECH LAW, INC SCOUT DELLAMIA (303) 809-7442

SAMPLE TYPE: DRINKING WATER

SAMPLE SOURCE: HW09-P SAMPLE DATE: 02/03/12 SAMPLE TIME: 1516

SAMPLE COLLECTOR: CLIENT/DJ

SAMPLE ID: 26832

PARAMETER	METHOD	LAB TECH		SAMPLE	E ANALYSIS		UNITS	RESULTS	MCL	QL
			STA	.RT	END)				1
			DATE	TIME	DATE	TIME				
TOTAL COLIFORM BACTERIA	SM 9222B	BR	2/3/2012	2035	2/4/2012	1900	cfu/100ml	<1	· <1	1
HETEROTROPHIC PLATE COUNT	SM 9215C	BR	2/3/2012	2008	2/10/2012	1900	cfu/1ml	24	n/a	1

SAMPLE COMMENTS:

TOTAL COLIFORM BACTERIA IS A GENERAL INDICATOR OF THE BACTERIOLOGICAL QUALITY OF WATER. RESULTS ARE EXPRESSED AS THE NUMBER OF COLIFORM ORGANISMS PER 100 MILLILITERS OF WATER. THE US EPA AND THE PA DEP HAVE DETERMINED THAT PUBLIC WATER SUPPLY SAMPLES IN WHICH COLIFORM BACTERIA ARE FOUND ARE UNSUITABLE FOR DRINKING.

MCL / MAXIMUM CONTAMINANT LEVEL - THE MAXIMUM PERMISSIBLE LEVEL OF A CONTAMINANT IN WATER WHICH IS DELIVERED TO A PUBLIC WATER SYSTEM ESTABLISHED UNDER THE FEDERAL SAFE EDRINKING WATER ACT.

QL- THE MINIMUM DETECTABLE LEVEL OF A CONTAMINANT BASED ON THE METHOD USED.

REVIEWED BY : John Scheatzle, President

Page 1 of 1

1620 north main avenue - scranton, pennsylvania 18508 - ph.: 570-348-0775 - fax: 570-347-4139
PADEP Lab No: 35-00302 - www.neslaboratories.com - neenvironmental@epix.net

ANALYTICAL REPORT

CLIENT: TECH ŁAW, INC SCOUT DELLAMIA (303) 809-7442

SAMPLE TYPE: DRINKING WATER

SAMPLE SOURCE: HW28A SAMPLE DATE: 02/03/12 SAMPLE TIME: 1149

SAMPLE COLLECTOR: CLIENT/DJ

SAMPLE ID: 26829

PARAMETER .	METHOD	LAB TECH		UNITS	RESULTS	MCL	QL			
			STA							
·			DATE	TIME	DATE	TIME				
TOTAL COLIFORM BACTERIA	SM 9222B	BR	2/3/2012	2032	2/4/2012	1900	cfu/100ml	<1	<1	1
HETEROTROPHIC PLATE COUNT	SM 9215C	BR	2/3/2012	2002	2/10/2012	1900	cfu/1ml	16	n/a	1

SAMPLE COMMENTS:

TOTAL COLIFORM BACTERIA IS A GENERAL INDICATOR OF THE BACTERIOLOGICAL QUALITY OF WATER. RESULTS ARE EXPRESSED AS THE NUMBER OF COLIFORM ORGANISMS PER 100 MILLILITERS OF WATER. THE US EPA AND THE PA DEP HAVE DETERMINED THAT PUBLIC WATER SUPPLY SAMPLES IN WHICH COLIFORM BACTERIA ARE FOUND ARE UNSUITABLE FOR DRINKING.

MCL / MAXIMUM CONTAMINANT LEVEL - THE MAXIMUM PERMISSIBLE LEVEL OF A CONTAMINANT IN WATER WHICH IS DELIVERED TO A PUBLIC WATER SYSTEM ESTABLISHED UNDER THE FEDERAL SAFE EDRINKING WATER ACT.

QL- THE MINIMUM DETECTABLE LEVEL OF A CONTAMINANT BASED ON THE METHOD USED.

REVIEWED BY:

John Scheatzle, President

Page 1 of 1

1620 north main avenue • scranton, pennsylvania 18508 • ph.: 570-348-0775 • fax: 570-347-4139 PADEP Lab No: 35-00302 www.neelaboratories.com • neenvironmentat@epix.net

ANALYTICAL REPORT

CLIENT: TECH LAW, INC SCOUT DELLAMIA (303) 809-7442

SAMPLE TYPE: DRINKING WATER

SAMPLE SOURCE: HW28A-P SAMPLE DATE: 02/03/12 SAMPLE TIME: 1152

SAMPLE COLLECTOR: CLIENT/MF

SAMPLE ID: 26830

PARAMETER	METHOD	LAB TECH		SAMPLE	E ANALYSIS		UNITS	RESULTS	MCL	QL
			STA	RT	EN	D	•			
			DATE	TIME	DATE	TIME				
TOTAL COLIFORM BACTERIA	SM 9222B	BR	2/3/2012	2033	2/4/2012	1900	cfu/100ml	<1	<1	1
HETEROTROPHIC PLATE COUNT	SM 9215C	BR	2/3/2012	2004	2/10/2012	1900	cfu/1ml	47	n/a	1

SAMPLE COMMENTS:

TOTAL COLIFORM BACTERIA IS A GENERAL INDICATOR OF THE BACTERIOLOGICAL QUALITY OF WATER, RESULTS ARE EXPRESSED AS THE NUMBER OF COLIFORM ORGANISMS PER 100 MILLILITERS OF WATER. THE US EPA AND THE PA DEP HAVE DETERMINED THAT PUBLIC WATER SUPPLY SAMPLES IN WHICH COLIFORM BACTERIA ARE FOUND ARE UNSUITABLE FOR DRINKING.

MCL / MAXIMUM CONTAMINANT LEVEL - THE MAXIMUM PERMISSIBLE LEVEL OF A CONTAMINANT IN WATER WHICH IS DELIVERED TO A PUBLIC WATER SYSTEM ESTABLISHED UNDER THE FEDERAL SAFE EDRINKING WATER ACT.

QL- THE MINIMUM DETECTABLE LEVEL OF A CONTAMINANT BASED ON THE METHOD USED.

REVIEWED BY:

John Scheatzle, President

Page 1 of 1

1620 horth main avenue • scranton, pennsylvania 18508 • ph.: 570-348-0775 • fax: 570-347-4139 PADEP Lab No: 35-00302 www.neelaboratories.com • neenvironmentat@epix.net

ANALYTICAL REPORT

CLIENT: TECH LAW, INC SCOUT DELLAMIA (303) 809-7442

SAMPLE TYPE: DRINKING WATER

SAMPLE SOURCE: HW28B-P SAMPLE DATE: 02/03/12 SAMPLE TIME: 1427

SAMPLE COLLECTOR: CLIENT/DJ

SAMPLE ID: 26831

PARAMETER	METHOD	LAB TECH		SAMPLE	E ANALYSIS	٠.	UNITS	RESULTS	MCL	QL
			STA	RT	EN)				
			DATE	TIME	DATE	TIME	ļ			
TOTAL COLIFORM BACTERIA	SM 9222B	BR	2/3/2012	2034	2/4/2012	1900	cfu/100mi	<1	<1	1
HETEROTROPHIC PLATE COUNT	SM 9215C	BR	2/3/2012	2006	2/10/2012	1900	cfu/1ml	16	n/a	1

SAMPLE COMMENTS:

TOTAL COLIFORM BACTERIA IS A GENERAL INDICATOR OF THE BACTERIOLOGICAL QUALITY OF WATER. RESULTS ARE EXPRESSED AS THE NUMBER OF COLIFORM ORGANISMS PER 100 MILLILITERS OF WATER. THE US EPA AND THE PA DEP HAVE DETERMINED THAT PUBLIC WATER SUPPLY SAMPLES IN WHICH COLIFORM BACTERIA ARE FOUND ARE UNSUITABLE FOR DRINKING.

MCL / MAXIMUM CONTAMINANT LEVEL - THE MAXIMUM PERMISSIBLE LEVEL OF A CONTAMINANT IN WATER WHICH IS DELIVERED TO A PUBLIC WATER SYSTEM ESTABLISHED UNDER THE FEDERAL SAFE EDRINKING WATER ACT.

QL- THE MINIMUM DETECTABLE LEVEL OF A CONTAMINANT BASED ON THE METHOD USED.

REVIEWED BY:

John Scheatzle, President

Page 1 of 1

1620 north main avenue * scranton, pennsylvania 18508 * ph.: 570-348-0775 * fax: 570-347-4139 PADEP Lab No: 35-00302 www.neelaboratories.com * neenvironmental@epix.net

ANALYTICAL REPORT

CLIENT: TECH LAW, INC SCOUT DELLAMIA (303) 809-7442

SAMPLE TYPE: DRINKING WATER

SAMPLE SOURCE: HW39 SAMPLE DATE: 02/03/12 SAMPLE TIME: 1042

SAMPLE COLLECTOR: CLIENT/TS

SAMPLE ID: 26835

PARAMETER	METHOD	LAB TECH		SAMPLE	E ANALYSIS		UNITS	RESULTS	MCL	QL	
			STA	RT	END)					
			DATE	TIME	DATE	TIME					Ⅎ
TOTAL COLIFORM BACTERIA	SM 9222B	BR	2/3/2012	2038	2/4/2012	1900	cfu/100ml	<1	<1	1	
HETEROTROPHIC PLATE COUNT	SM 9215C	BR	2/3/2012	2015	2/10/2012	1900	cfu/1mi	26	n/a	1	

SAMPLE COMMENTS:

TOTAL COLIFORM BACTERIA IS A GENERAL INDICATOR OF THE BACTERIOLOGICAL QUALITY OF WATER. RESULTS ARE EXPRESSED AS THE NUMBER OF COLIFORM ORGANISMS PER 100 MILLILITERS OF WATER. THE US EPA AND THE PA DEP HAVE DETERMINED THAT PUBLIC WATER SUPPLY SAMPLES IN WHICH COLIFORM BACTERIA ARE FOUND ARE UNSUITABLE FOR DRINKING.

MCL / MAXIMUM CONTAMINANT LEVEL - THE MAXIMUM PERMISSIBLE LEVEL OF A CONTAMINANT IN WATER WHICH IS DELIVERED TO A PUBLIC WATER SYSTEM ESTABLISHED UNDER THE FEDERAL SAFE EDRINKING WATER ACT.

QL- THE MINIMUM DETECTABLE LEVEL OF A CONTAMINANT BASED ON THE METHOD USED.

REVIEWED BY:

John Scheatzle, President

Page 1 of 1

1620 north main avenue • scranton, pennsylvania 18508 • ph.: 570-348-0775 • fax: 570-347-4139 PADEP Lab No: 35-00302 www.neelaboratories.com • neenvironmental@epix.net

ANALYTICAL REPORT

CLIENT: TECH LAW, INC SCOUT DELLAMIA (303) 809-7442

SAMPLE TYPE: DRINKING WATER

SAMPLE SOURCE: HW39-P SAMPLE DATE: 02/03/12 SAMPLE TIME: 1113

SAMPLE COLLECTOR: CLIENT/DJ

SAMPLE ID: 26833

PARAMETER	METHOD	LAB TECH		SAMPLE	E ANALYSIS		UNITS	RESULTS	MCL	QL
			STA	RT	EN)				
			DATE	TIME	DATE	TIME				
TOTAL COLIFORM BACTERIA	SM 9222B	BR	2/3/2012	2036	2/4/2012	1900	cfu/100ml	<1	<1	1
HETEROTROPHIC PLATE COUNT	SM 9215C	BR	2/3/2012	2010	2/10/2012	1900	cfu/1ml	10	n/a	1

SAMPLE COMMENTS:

TOTAL COLIFORM BACTERIA IS A GENERAL INDICATOR OF THE BACTERIOLOGICAL QUALITY OF WATER. RESULTS ARE EXPRESSED AS THE NUMBER OF COLIFORM ORGANISMS PER 100 MILLILITERS OF WATER. THE US EPA AND THE PA DEP HAVE DETERMINED THAT PUBLIC WATER SUPPLY SAMPLES IN WHICH COLIFORM BACTERIA ARE FOUND ARE UNSUITABLE FOR DRINKING.

MCL / MAXIMUM CONTAMINANT LEVEL - THE MAXIMUM PERMISSIBLE LEVEL OF A CONTAMINANT IN WATER WHICH IS DELIVERED TO A PUBLIC WATER SYSTEM ESTABLISHED UNDER THE FEDERAL SAFE EDRINKING WATER ACT.

QL- THE MINIMUM DETECTABLE LEVEL OF A CONTAMINANT BASED ON THE METHOD USED.

REVIEWED BY:

John Scheatzle, President

Page 1 of 1

USEPA CLP Generic COC (LAB COPY)

DateShipped: 1/30/2012 CarrierName: Courier AirbillNo:

CHAIN OF CUSTODY RECORD

Site #: A3TA Case Complete: False No: 3-013012-165952-0027

Lab: Northeastern Environmental Labs Lab Contact: John Scheatzle Lab Phone: 570.348.0775

FB06 HW13 HW18	01/30/2012 09:30 01/30/2012 11:23 01/30/2012 11:27	
HW18		
	01/30/2012 11:27	
LIMATA		
110010	01/30/2012 11:52	
HW20	01/30/2012 16:12	
HW20	01/30/2012 11:52	
HW25	01/30/2012 15:32	
	HW20	HW20 01/30/2012 11:52

	Shipment for Case Complete? N
Special Instructions:	Samples Transferred From Chain of Custody #
Analysis Key: Bacteria=17-Bacteria - Fecal & Total Coliform, HPC	

items/Reason	Relinquished by	Date	Received by	Date	Time	Items	/Reason	Relinquist	ned By	Date	Received b	y I	Date	Time
7	Carlo	01/30/1-	· manechentus	1130/13	1(0.110)									
				1										
	· · · · · · · · · · · · · · · · · · ·			<u> </u>										
					1									

AirbillNo:

USEPA CLP Generic COC (LAB COPY)

DateShipped: 1/31/2012 CarrierName: Courier for Northeastern CHAIN OF CUSTODY RECORD

No: 3-013112-170823-0052

Lab: Northeastern Environmental Labs Lab Contact: John Scheatzle Lab Phone: 570.348.0775

Case #: R33917

Sample #	Matrix/Sampler	Coll. Method	Analysis/Turnaround	Tag/Preservative/Bottles	Station Location	Collected	For Lab Use Only
FB07	Aqueous/ Dan Jacobsen	Grab	Bacteria(14)	2264 (-NA- / 125mlSterilePoly) (1)	FB07	01/31/2012 14:15	
HW26	Drinking Water/ Bryan Berna	Grab	Bacteria(14)	2131 (-NA- / 125mlSterilePoly) (1)	HW26	01/31/2012 10:26	
HW26-P	Drinking Water/ Dan Jacobsen	Grab	Bacteria(14)	2166 (-NA- / 125mlSterilePoly) (1)	HW26	01/31/2012 11:37	
HW35	Drinking Water/ Mike Ferrier	Grab	Bacteria(14)	2203 (-NA- / 125mlSterilePoly) (1)	HW35	01/31/2012 11:49	
HW52	Drinking Water/ Bryan Berna	Grab	Bacteria(14)	2300 (-NA- / 125mlSterilePoly) (1)	HW52	01/31/2012 15:22	
			Contracts (Material Economics of September 2				

	Shipment for Case Complete? N
Sample(s) to be used for Lab QC: HW35	Samples Transferred From Chain of Custody #
Analysis Key: Bacteria=17-Bacteria - Fecal & Total Coliform, HPC	

Items/Reason	Relinquished by	Date	Received by	Date	Time	Items/Reason	Relinquished By	Date	Received by	Date	Time
5	Jollandelin	01/31/12	San hecheating	UBID	18:30						
							11.0				1
											
										-	

Temperature: 5.4°C

USEPA CLP Generic COC (LAB COPY)

DateShipped: 2/1/2012

CarrierName: Courier for Northeastern AirbillNo:

Case #: R33917

CHAIN OF CUSTODY RECORD

No: 3-020112-085210-0054

Lab: Northeastern Environmental Labs Lab Contact: John Scheatzle

Lab Phone: 570.348.0775

Sample #	Matrix/Sampler	Coll. Method	Analysis/Turnaround	Tag/Preservative/Bottles	Station Location	Collected	For Lab Use Only
HW29	Drinking Water/ Mike Ferrier	Grab	Bacteria(14)	2336 (-NA- / 125mlSterilePoly) (1)	HW29	01/31/2012 18:18	_
HW29z	Drinking Water/ Mike Ferrier	Grab	Bacteria(14)	2371 (-NA- / 125mlSterilePoly) (1)	HW29	01/31/2012 18:18	
HW32	Drinking Water/ Tom Sedlacek	Grab	Bacteria(14)	2429 (-NA- / 125mlSterilePoly) (1)	HW32	02/01/2012 10:45	
HW32-P	Drinking Water/ Dan Jacobsen	Grab	Bacteria(14)	2465 (-NA- / 125mlSterilePoly) (1)	HW32	02/01/2012 10:50	
HW33	Drinking Water/ Mike Ferrier	Grab	Bacteria(14)	2522 (-NA- / 125mlSterilePoly) (1)	HW33	02/01/2012 10:49	
HW33a-P	Drinking Water/ David Johnson	Grab	Bacteria(14)	2558 (-NA- / 125mlSterilePoly) (1)	HW33a	02/01/2012 10:42	
HW33b-P	Drinking Water/ David Johnson	Grab	Bacteria(14)	2594 (-NA- / 125mlSterilePoly) (1)	HW33b	02/01/2012 11:42	
			manufation to the set of the latest set of the l				
							_

Special Instructions:	Shipment for Case Complete? N Samples Transferred From Chain of Custody#
Analysis Key: Bacteria=17-Bacteria - Fecal & Total Coliform, HPC	

Items/Reason	Relinquished by	Date	Received by	Date	Time	Items/Reason	Relinquished By	Date	Received by	Date	Time
-	D-0 1502	7/1/12	1 5.1	2/1/	14.00						
	Lacron	712	Lin 110	2012							
											[
											L
		í		ļ	<u> </u>						

Temperature: 5.1°C

Page 1 of 1

AirbillNo:

USEPA CLP Generic COC (LAB COPY)

CHAIN OF CUSTODY RECORD

DateShipped: 2/2/2012

CarrierName: Courier for Northeastern

Case #: R33917

No: 3-020212-092655-0073

Lab: Northeastern Environmental Labs

Lab Contact: John Scheatzle Lab Phone: 570.348.0775

Sample#	Matrix/Sampler	Coll. Method	Analysis/Turnaround	Tag/Preservative/Bottles	Station Location	Collected	For Lab Use Only
FB08	Aqueous/ David Johnson	Grab	Bacteria(14)	2630 (-NA- / 125mlSterilePoly) (1)	FB08	02/01/2012 14:45	
HW34a	Drinking Water/ Tom Sedlacek	Grab	Bacteria(14)	2666 (-NA- / 125m SterilePoly) (1)	HW34a	02/01/2012 15:47	
HW34a-P	Drinking Water/ Dan Jacobsen	Grab	Bacteria(14)	2705 (-NA- / 125mlSterilePoly) (1)	HW34a	02/01/2012 15:55	
				į.			
							+

Sample(s) to be used for Lab QC: HW34a-P	Shipment for Case Complete? N Samples Transferred From Chain of Custody#
Analysis Key Bacteria=17-Bacteria - Fecal & Total Coliform, HPC	

Items/Reason	Relinquished by	Date	Received by	Date	Time	Items/Reason	Relinquished By	Date	Received by	Date	Time
3	Del Bl-	2/2/1	2 San Nechlet	S116/2	10.00		,		·		

Temperature: 4,900

AirbillNo:

USEPA CLP Generic COC (LAB COPY)

CHAIN OF CUSTODY RECORD

No: 3-020212-172013-0091

DateShipped: 2/2/2012

CarrierName: Courier for Northeastern

Case #: R33917

Lab: Northeastern Environmental Labs Lab Contact: John Scheatzle Lab Phone: 570.348.0775

Sample #	Matrix/Sampler	Coll. Method	Analysis/Turnaround	Tag/Preservative/Bottles	Station Location	Collected	For Lab Use Only
FB09	Aqueous/ Dan Jacobsen	Grab	Bacteria(14)	2806 (-NA- / 125mlSterilePoly) (1)	FB09	02/02/2012 10:15	
HW40	Drinking Water/ Tom Sediacek	Grab	Bacteria(14)	2978 (-NA- / 125mlSteriiePoly) (1)	HW40	02/02/2012 15:39	
HW40-P	Drinking Water/ Dan Jacobsen	Grab	Bacteria(14)	3014 (-NA- / 125mlSterilePoly) (1)	HW40	02/02/2012 15:44	
HW41	Drinking Water/ David Johnson	Grab	Bacteria(14)	3050 (-NA- / 125miSterilePoly) (1)	HW41	02/02/2012 16:12	
HW41-P	Drinking Water/ Mike Ferrier	Grab	Bacteria(14)	3086 (-NA- / 125mlSterilePoly) (1)	HW41	02/02/2012 15:54	
HW42	Drtnking Water/ Bryan Berna	Grab	Bacteria(14)	2770 (-NA- / 125mlSterilePoly) (1)	HW42	02/02/2012 10:28	
HW42z	Drinking Water/ Bryan Berna	Grab	Bacteria(14)	2870 (-NA- / 125mlSterilePoly) (1)	HW42	02/02/2012 10:29	
HW46	Drinking Water/ Mike Ferrier	Grab	Bacteria(14)	2906 (-NA- / 125mlSterilePoly) (1)	HW46	02/02/2012 11:39	
HW46-P	Drinking Water/ David Johnson	Grab	Bacteria(14)	2942 (-NA- / 125mlSterilePoly) (1)	HW46	02/02/2012 11:24	
			AATT.				T

Special Instruction	is:						_		ase Complete? N ferred From Chain	of Custod	y #
<u> </u>	· · · · · · · · · · · · · · · · · · ·										
Analysis Key: Bac	teria=17-Bacteria - Fed	al & Total C	Goliform, HPC				·				
Items/Reason	Relinquished by	Date	Received by	Date	Time	Items/Reason	Relinquished	By Date	Received by	Date	Time
9	Dal Illin	2/2/12	Dero Heligator	er kerc	18:30						
											1
					ļ	<u> </u>				-	
								1			

Temperature: 4.2°C

AirbillNo:

USEPA CLP Generic COC (LAB COPY)

CHAIN OF CUSTODY RECORD

No: 3-020312-165623-0105

DateShipped: 2/3/2012

CarrierName: Courier for Northeastern

Case #: R33917

Lab: Northeastern Environmental Labs
Lab Contact: John Scheatzle

Lab Phone: 570.348.0775

Sample #	Matrix/Sampler	Coll. Method	Analysis/Turnaround	Tag/Preservative/Bottles	Station Location	Collected	For Lab Use Only
FB10	Aqueous/ Mike Ferrier	Grab	Bacteria(14)	3343 (-NA- / 125mlSterilePoly) (1)	FB10	02/03/2012 14:09	
HW09	Drinking Water/ Tom Sedlacek	Grab	Bacteria(14)	3415 (-NA- / 125mlSterilePoly) (1)	HW09	02/03/2012 15:20	
HW09-P	Drinking Water/ Dan Jacobsen	Grab	Bacteria(14)	3451 (-NA- / 125mlSterijePoly) (1)	HW09	02/03/2012 15:16	
H W 28a	Drinking Water/ David Johnson	Grab	Bacteria(14)	3208 (-NA- / 125mlSterilePoly) (1)	HW28a	02/03/2012 11:49	
HW28a-P	Drinking Water/ Mike Ferrier	Grab	Bacteria(14)	3244 (-NA- / 125mlSterilePoly) (1)	HW28a	02/03/2012 11:52	
HW28b-P	Drinking Water/ David Johnson	Grab	Bacteria(14)	3379 (-NA- / 125mlSterilePoly) (1)	HW28b	02/03/2012 14:27	
HW39	Drinking Water/ Tom Sedlacek	Grab	Bacteria(14)	3122 (-NA- / 125mlSterilePoly) (1)	HW39	02/03/2012 10:42	
HW39-P	Drinking Water/ Dan Jacobsen	Grab	Bacteria(14)	3172 (-NA- / 125mlSterilePoly) (1)	HW39	02/03/2012 11:13	
	<u></u>						
							1

	Shipment for Case Complete? N
Special Instructions:	Samples Transferred From Chain of Custody #
Analysis Key: Bacteria=17-Bacteria - Fecal & Total Coliform, HPC	

Items/Reason	Relinquished by	Date	Received by	Date	Time	Items/Reason	Relinquished By	Date	Received by	Date	Time
\bigcirc	18/1/1/1/	2/3/10	, , ,	1/2/12	1923	-					
0 -	100 100	-/14	Mis Janger	4/2/12	1107			_		-	ļ
				-		·	 				-

- Blank 11211 Weg 1	===
(2) 9(2) [SIN W (SIWH) WOT BEENS	
(EIMH) MOT WOOL & LEWIS	
me (5) (9) (2) (308 (9) (1) (1) (1) (1) (1)	
360 (Since Medallis) 410 140 1607 (9)	
Hebi Hac of MEPA Hebi	
300 50 50 50 50 50 50 50 50 50 50 50 50 5	//
Secure A Centre concessioned met 1305 1505 1509 (c) < 1	
36 (c) 4 Maken Medical Center 1843 1562 (c) 4 366 366 4 366	
13 (9) E21 15-1 1840 Demos 2000 E1	
Por Coll (E-1 Seeco ms trais -	
Acad 13-119 @ 1530 But	
2 (2) (2) (2) (3) (4) (5) (5) (6) (7) (8) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9	
me 12 (0) 2011 estil (0) 20 5000000000000000000000000000000000	
200 (40) (90) (90) (90) (90) (90) (90) (90) (9	
2) (9) 400) (2) 1/40 (2) 1/40 (2) 1/40 (3) 1/40 (4) 2/40 (5) 2/40	
8 (9) 2 (9) 2 1 1 58 (9) 2 1 Day	_
12 (0) Pall 12 (0) 21 (0) 25 (0) 21	
Search Deland Coo 1603 (6) 2)	
	_ [
1) 1/2 Client Date Time Date Time 1/5 = 1	
	.=./ .=./
Start Midia batch 05:3013	
6106-30 Astal sibim trut?	
and the second of the second o	-410

Also and the second				
		er og skrivet og ogsetters	<u> </u>	
		T 2		
Log# Chent	Sample Date Time	Run Date The	Resolts 1	-6C
Cootinge	5m92223	1-31		1
2013 B Tech Law (HW18-	P) 1-30 1152	1-31 15/2		34
21631 B Tech Law CHW20	p)	1513	(o) < (-8
20132 B Tech Law CHW2S	Je) V 1532	1515	(b) < 1	
Daws Clabington Hs C	2) 1-3, 1,00	1514 1517	(b) < 1	
2163 (Hampton Tunk () 21157 (Nichols VII (S)	11940			
QUEST C Nicholsvil (P)	1 1/1/40	1519	(p) <)	
auss C Hampton Cs G		/5 ab	(b) < 1	
26159 C Comfort Tunk (9	7) 163	12 95 10	Neg	
Russ (Allied CP)	1-3/13/0	1503	(0) 21	
Delse C Hampton Tunk (s	1100 1100	15/24 15/25	(15) < 1 No a	
				4.
Read	21112 @10	130 BR		
Colitag				
aus A Mel's Diner	1-31 1230	1-31 1500	1-7-	<u> </u>
EC				
Read	2/1/12/6/1	130 132		
2049 A Deleos Tavern	1-31 10015	12-11 140	17/	2
Read	212/12 @ 14	00 BR		
17400	200			
			50.50.5Kg-0.52-0.00-2	
4				

DIM0269615

\$								-
	<u> 1868 a. 1867 at Latingado</u>		**************************************	an and a fine of the second	encences con	interior	3-41 (A. A.) (A. A.) (A. A.) (A. A.) (A. A.)	1
			San	ple	Ru.		Results	
	Log#	Clion	11 1 2 1 1	Time	Date	Time		1
	027 -	Start SM922	2 B		2-11	1600	(0) <1	#.
		Comp Acahela	3-1	1615	1	100	6) 4	-\-
		Techlow (FBO7)	1-31	1415		10,03	(0) 4)	+
		Tech aw (HW 52)		599		1604		+
		Techlaw (Hw35)		"ual		1,05	34 D	7
		Techlaw (Hward)		عادي		1000	(b) (d)	\supset
	26673 B	Techlow (Hwale-P)		1137		160	(0) KIII	
	DIGG C	U. of Scienton (P)		0750			(0) (1)	\mathbb{L}
	32238 C	Company WH (S)		1015		1609		Щ
	100 C	Comfort wH (P)		1015		ا ۱۵ عاد	(0) K)	1
		Blank				11911	Neg	1
		Towne Place (s)		105		1612		1
		Towne Place (P)		105			600	1
	26719 C	Rebab massic (P)		1050			(0) </td <td>+</td>	+
			411-	1050		1615		4
		Pittston YmcA (P.		0815			(0) 4)	-+
		Sohn Heinz WB (P		1090		1618	(b) 41 (c) 4)	+
		Waston Field (P)		1215		1619	(c) 4)	+
- M		Fairfield was (2)		1000		الما والما		-+
		Fairfield WBCSL		1000			(9) < 1	-}
	2606	Fairfield WB(SR)	4	10,		1600		H
		Blank Hilton Scranton (P		Vac		2 a 3		+
M				100		167		-
		Holiday Exp (P)	1111	auo		1695		1
	00 BY	Holiday Exp (S)		0940			<u> </u>	7
		Host WB (P)		00		1691	(a) <	-
	Aura C	HOST WB (S)		1010		1628	6341	V
- R					71111			I
	Cor	tinue	الطبابسان	<u> </u>	_ <u></u>	<u></u>		تعلید
N. Jan	enistal Ragarina in ta	ালাকালি হয় বাংলাকাল প্রতির বিশ্বাসন্থার এই প্রতির হিছে । ব	nika santarin di	Kata Martinas	erfije distriktivi ja vilotitivi ja	র ভারতি কাভিনির -	हर्तिक स्थापन है। इस्तर के किया स्थापन के के	

V DG738 C Hampton WB (5 maaaa B 2-1 (2) 2-1 1030 2-11	Time 70/60 F1/- 61
A REIST C. Hampton W.B. DICTSSIC Rehab Plains C. Rehab Plains C. Biank. DICTS B. Techlaw (HWD)	e)	1630 (0)(4) 163 (0) 4 1632 (0) 4 1633 Neg 1634 (100)
2014 B Tech law (Hwa 20143 B Tech law (Hwa 20143 B Tech law (Hwa 20143 B Tech law (Hwa 20145 B Tech law (Hwa	33(-2) 2-1 1042 33) 1043 33) 1049 33-P) 10 ⁵⁰	1635 (6) 21 1637 (6) 21 1637 (6) 21 1658 (0) 21 1639 (0) 41 1640 (0) 21
PUMIC B Tech law (H) - End Sm Read	2332-P) 1149 1 933313 213/13 @ 1530 30	1640 (O) () 1
2018/ B Terblaw (Hus 2018/ B Techlaw (Hus 2018/ B Techlaw (Hus 2018/ B Techlaw (FB 2001) C Fawn Lake (P	08) V 1445	1601 (G) (1) 1601 (G) (1) 1602 (O) (1) 1604 (O) (1)
2050 C Fauntake Cl 2050 C WIF MCH C	(4) (50) (9) (6) (6) (6) (8) (8) (8) (8) (8) (8) (8) (8) (8) (8	1605 (0) < 1 2606 (0) < 1 1607 Wag
Read	213112 @ 1530 BD	
	2.	and a supplementary to the

DIM0269615

18		1	500						
			-64	mole	Ru	Σ Λ	Ros	1017 E	
18			Date	Time	Date	Time	179FC	FT- G	1
		Smass	2 3	444	3-3	1500	Ne	9 8	
Margine Charles Charles Charles	<u> Bilipater Pure</u>		a-3	1000		1501			يار.
- 36814 B	Techlow (1m425)	3-2	109°4	444	1803	(0)		<u> </u>
	Techlaw (HH	153ª	4/-+	1503		< 11	_0
	<u> Jechlaw C</u>			1038	##-	1564	(0)	< 1 T	<u>a</u> L
	Jechlan ()		+++	1554		1505	(0)	} 	24
	z Techlaw C			1015	+ + +	- 10		4111	26
	Jechlaw ((139	14-1	1507	(0)		26
	Jech bu C			1544		1508	(6)	\$!!!	- 2 G
	Techlaw (الهار		15 69	(4) <	117	_!_
	Techlaw (1	<u> </u>	LYL	1124		1810		<u> </u>	
	- Blank					JS 11	INe	9	
	Residence +		a-3	0230		JS 13	(0)	<u> </u>	
	Besidence		}	0830		1513		! </td <td></td>	
- 26824 C	Fanfield 1	Haz (P)		0840		1514	-	< D	
26875 C	Fairfield	Haz (s)	1111	0540		1515	(0) <	#114-	- +
- DVXD6 C	Rehab Haz			0645		js 16	<u> </u>	\$111	-+-
	End :	5m az	DD B		W	15!7	Ne	1 1	
#~						1			
	L Bead	1 314	Ma @	1400	BR	444			_1
			1111			444			
			1111						
	A					###			-
7 L	Colitag								4-
- 20807 B	NIHICPOR	Cad one	2-3	ابودي	2-3	1548	17-	*	
	<u> </u>								
	Reac	1 214	(b) (Q)	إبوعت و	M.				<u> </u>
<u>-</u>	<u> </u>						للللا		
	 		خلط		444				
								خليليك	-
	Manufacture and the second								The Street

DIM0269615

Mary .	<u>, A. J. Bestell, A. L. Bestell, State of the A. S. Per</u>	~ 0	2901-06-901-02	1491 <u>(599</u> 13)			<u> 1808 (1808)</u>	**************************************		
I	33	:	San	ole	Ru		Res	44		
1004	Logit Clien		Date		Date	Time	TC/FC	F1/-	1	
R	Start	5m 922	2-3	1409	a-3	20030 20031	(z)	g 1 21	2	
	Dusor B Techlaw	(FBIO) (HWOSa)	12-3	1,49		26832		< 1		
	24836 B Techlaw			IVIS 3		2833	(co)			
	DUG31 B Techlau			1427		2034	(0)	<\		
	96833 B Techlar	2 (HW39-P)		1510		2835 2836	(b)	< N		
	26833 B Techlar 26834 B Techla	M (HMDE)		1530		20037	(p)	< 1 ·		
	26835 B / Techlau			1042		2838	(6)	5 1		
-	- End	Smazzz	8			36 539	Ne	9	V.,	
		Lead 5	14/12 (a 199	OBR					
	<u> </u>	reach is	1141113 C		101					
	1 1 3									
4-		-	Hi-		-					
\\[-\]									Ţ,	
									_	
+		<u> </u>		lack			++			
					a Tra	1/2				
		- ;			0 '		-			
							1 - 1 + 1			
				erre samer reassaries	deret Vision Vision	displacement of the first	n els esse	Links Waller	a still	
		4 1			<u> </u>					

DIM0269615

Staff over the state of the sta	ur Mariana (m. 1885), francisk		empejas vistosis ir		
E LOGH	Techlaw (Hwo Pay I A o 2 A 3 3 A 27	Date Time SM 921 Dalch 6	1-3 0900 5 X	Date Tim	
24632 B	Final Rosol Techlaw (Hwas Day 1 A O, 2 A O	1: 57 ofi P) 1-30 1532 3 0 Day 80	1-31 0403 5 X 6 9 46		<i>y</i> -
	Final Result	3 0 Dag 30 CFU 1: CES CFU 1: Dag	5 X 6 A Ga 7 A G S 1 Im L 1-311 Cq05 5 A	3 70 B	
	3 A DO 3 A A A A Y X Final Result	′ ୫ । ୪		3 (c 2) 3 (c 2)	

	Log#		D	rate Time	Past Star	o Date Tin	
	DU625 B	Tech Law a	1 (8W ⁴	Ro 1197	1-31 CA10	B-7 0°	
		Day I A G	3, 30		(A 76	13 68	
		Flogs Rasi		2 00 1/			1
\$ *	Dialo310 B	Tech Law (F		2 - 6020		→ g-h 10°	
	0005011	Day 1 A C	2,34	Dean	5 A B A B A		
: 1		3 A	2,30		7 46	82	
		Final Re	25011	< \ c.e	5/1/2		
	Dia 27 B	Tech Law (HW (3) 1-	30 1133	1-3) oq!-	5 13 -7 1000	- K 2
		Day 1 A Vaplate 2 All) B	D COA	5 X 4 37	B 138 44plc	to
		1 1	1 11 1 3			8 139 MARG	
		Float Re	su it i	<i>5</i> 56 c	to /Imi		
	21-01	RQA			1-31 091) g
	Barne	< 1	6401		13, 103	40	
			_ C+U [
						3	
					(a)		
an in the second	em Light Lear Leas	a dir i a directori di ila di ila	rod Begünerie Ro	ENTERN EX.	Markey en de Tradition	parties to the teleph	7 (C. 10)

DIM0269615

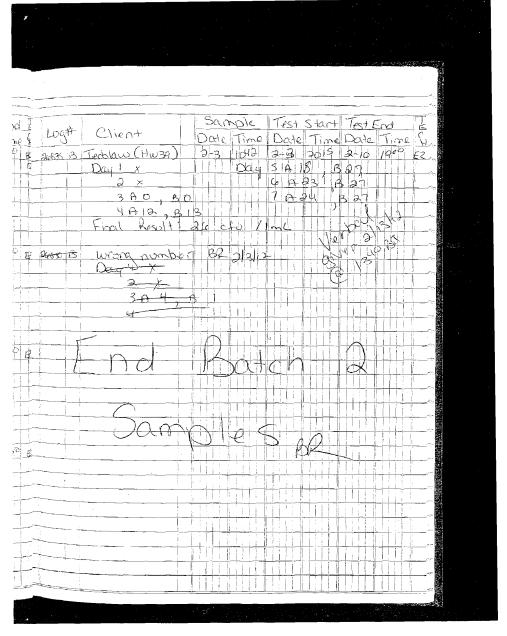
** 3	Andrew He see the see	의 기술시원으로 프랑크웨스(S	e eregnesi in maar jari kine ti		43542
			-		
		Sample	Tool Charle	Tost End	
	# Client	Date Tim	e Date Tim	e Date Tim	- E C
98 26670	B Techlaw (FB07	la o Da	5 A O	3 0	182
	3 A C	, BO	1 11 11 1 1 1 1 1 1 1 1 1	PO PO	
	Final Reso	A = 37 6	10/1 m		V*
92 Buzz	B. Techlaw (HW52			2-2- (1,90	RZ .
	Day IA O	, 80 Da	45 A C	8 6	
	3 χ	, 13 9	7 4 0	180	
	Final Reso	1+3 <1 (
W Quii3	B Tech law (Hw	5) 1-31 1140	2-11008		lee_
b	Day 1 A 0	, & O Da	y 5 A 47 , U A 50	B 50	
	3 x		7 17 50	'l	
		+:50 6			
)(K))(G)	B Tech law Chus) H31 10 ³	53 (29 8	2-8 1000	BL
	Day 1 A 0	, 801	1 4 109 13		
	3 X		7 P.69, B	(0./1	
	Final Result	1: 68	efy / Imi		
	·				
DIMOGGGG	_				

DIM0269615

in Winds	1.		Say	aple	Test Start Te	SI End E
	Loo	B Tech Law Chu	Date	Time D	whe Time Da-	le Time &
; , ;	Hand	Day 1A	0 30	Day SA	32 , 8 33	
		3 A 3 X	/	7.6	39 834	
		Final Res		CfJ/1		
	<u> 36-140</u>	B Techlow (Hu Day 1 A	0 30	Day 5	1 1400 28 A 72 B 71 X 75 074	loc a
		3 x		7	7 76 674	
——————————————————————————————————————		B Techlow (H		d & / 1/		1.20 0
	7	Day 17 0 Somul - 2 17 17 50 kdes 3 X	20	Day 5	434 805 439 831 430 835	
		Final Res	wH: 33			
	∂6143	B Techlaw CHW Day 1 12	0 30	Pay 5	A-72 B (95)	1000 3
		3 x 4 x		1117	A 64 3 65	
		Final Re	5017 : les	\$ cfu	1100 4	

DIM0269615

			- N	
		an of the effect they are selected		
T	Sample	Test Start Je		
Logh Client	Douts Time	Date Time Do	st Ena k	
12 20143B Tech law CHW32) 2-1 104S	211407 2	8 1000 PC	, P
Day 1 A o	, as Day	5000		şi Ji.
3 A	, 30	6 A 0 B 0		t
u ×				
Final Result	: SV CFE) /Iml		
1 20744 B Techlaw (Aws	3)2-11044	21 1409 2	8 1000 82	
Day 1 A 0		5 A 41 B 6		
3 A O	, BO	6 A 42 1, B		
9 ×		1 149 8		
Final Resolt	: 43 cf	ulimil		
De 196745 B Techlaw (HW32-	3)) 1, 1, 50		8- 1000 8	
Day 1 A-C,	30 Day	5 4 32 2	34	
a A o	80	6 A 32		
3 X		1 A 35	335	
Final Resol	+; 35 c	Ed /Jml		
B Xorgo B Tech law (Hws)				
18 ROYGB Tech law (Hws)	60 Dry	21 1913 2-2 5 A 73, R69		
240	30	6 A 74 B 7		
3 X 1	<u> </u>	7 A 74 , BTG		
Final Rosu	H2 714 Of.	/120	10 1156	
,,,,,			00)	
		100	WATH	
		<u> </u>		


DIM0269615

	Logt Chient Sample Test Start Test Eng II Date Time Date Time Date Time Day 1 A C Sc Day 5 A 8 B W 3 x 1 2 10 3 10 10 10 10 10 10 10 10 10 10 10 10 10
	Frm Result: 10 dfc/1ml 2008 B Tech Law (14w34A-DD-) 1555 2-2 1603 2-9 1000 8 Day 1 A O BD Ddy S A O BD 2 X 3 X 7 A O BD Final Result: KI cfc/Imil
	2080 8 Ten 1 au (F878) 2-1 1445 2-2 1066 2-9 1020 8 20 1004 1 2 2 2 1020 8 2 2 2 1020 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
3	

DIM0269615

	Client	Sample Date Time	Dote Time D	ate Time ! LC
Diene B	Techhan (EBD9) Day 1 x) 2+2 1015 Pag	23 Cq34 8 5 A 0 , R 0 6 A 0 , R 0	-10 10 ^{d3} (aux
	JAC Fray Result	\$0 	7 A 0 RO	
£50 B	Jechaw (Hwy Diy 1 × 2 x 3 A34 C	Do.	23 Cq43 a 15 & 42 b 4 16 43 8	
	Final Roso #	41 43 62	>1N44	
26817 B	Day 1 x 3 x 9,	3 7 3 8	2-3 0400 2 5 A 9 5 6 A 12 8	(a)
ausis is	Techlon Churi Day 1 x 2 x 3 a 14) 2-3 (le ²	2-3 0944 2- 43 A44 , 64 6 A 48 , 64 7 R 48 , 64	9
	YABS Final Result	244		

-						
and the second	Log#	Client	Sample Date T	2 Tost	Start Tee	St End E
The state of the s	26831 B	Techlow (Hudrop)	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Was a Distance	4 10 172	
		3 A S P	> 15	1 6 A	13 18 18	
		Final Result				
	914839 B	Techlaw (Hwog-P) Day 1 x 2 x		lay 5 m	23, 322	
		3 A 9 B	5	7 12	23 B25	
		Final Result:	SH 62	y Alma		
		Jechlaw (Hw39-P) Day 1 x	2-3 II)aysa	10,38	
		20 - 4	3 8	6 A 7 A	10 B 10	
		Final Result:	ان دجن ا			
	DG834 B	Techlow (Huca) Day 1 x	2-3 11S	aus Aa	30 36 30 836	
		3 A 12, B 1	25	7 7 5	30 , 836	
		Einal Result!	33 Ctu	1100		

				ا، ها	13/12		THERM	OMETER	TEMPER	RATURE F	ECORD							
CORRECT	TION FAC	ror: -	0.0	o - o	.5	·				· · · · · · · · · · · · · · · · · · ·							<u></u>	
			LOCATION	ON: An	mor	thlu S	Sterili-	ty Inc 57: 3'	<i>ाम</i> ळक्	TEMP R	ANGE:			58	TO Le	a° c		
	S/N: UP	30 8 C	R		NIST CA	LIBRÀTE	D AGAIN	si: 3'	FY19	1			CALIBRA	TION DA	ALE: C	1-03-	12	
YEAR	201	2																
MONTH		ANUARY	′	ļ ,	FEBRUAF	₹Y	į	MARCH		Į	APRIL		ļ	MAY		Ţ	JUNE	
DAY i	TEMP	TIME	INTL	TEMP	TIME	INTL	TEMP	TIME	INTL	TEMP	TIME	INTL	, ТЕМР (TIME	INTL	TEMP	TIME	INTL
1	í :			127.5	1200	BR	ί			í			í		l :	ί	-	
2		:		26.5	0935	BR	ì	ļ		í			1			ì	[
3	1			1065	1000	CL	}		:	}					i	ļ		l
4		!		26.5	1200	BR	ļ ·		i	,			,		ļ	ļ		
5	!			ĺ	1.		ļ	Ì		!			!		}	!		
6	Í	İ		27.5	1000	PSK	Í	:	1	İ			ĺ			İ		
7	1				0930		í	•		ί			í			ί		
8		į		127.5			1			ì	: : :	<u> </u>	1			ì		
9				127.5	0950	BR	1			1			i		ĺ	i i		
10			!		0930		<u>}</u>	1		<u> </u>			}			ļ		
11	1			27.5	0915	es	ļ		1	ļ		'	ļ			ļ		
12	!			1	1	0 -		!		ļ			ļ			ţ	:	
13				197.5	1000	BR	i			i			Í			i		
14	í		!	127.5	1020	BR	ì			ί			1			í		
15			ĺ	1265	(215	BR	1			1	į	i			Į	į		1.
16	,		l i			i	}		!				}	·		ļ	ľ	
17	(61.5	1045	BR	ļ			Ţ		i	ļ			,		1	ļ		Ì
	61.5		BL	ļ	:		ļ	1		!	i		!	!		Ì		
19	161.5	1000	Be	į.		İ	j		:	j	İ		j		:	i	ļ	
20			İ	í			í			1			í		İ	í		,
21			!	í			ì	1	:	ì		ĺ	ì			i		
22			:	}	!				1	}			1		į	1		i
23	Syprilis	-	I	Į.					İ	ļ			}		:	ļ		
¥ 24	128.5	1100	Be	Ì.			į	:		ļ	1		ļ	;		!	l i	
	1985		BI	1		ĺ	Ĵ			į			1			į	!	[
26	127.5	1010	CR	j			j		i	j			j			j		:
	128.5		BR	í	1		1			í			í	I !	ļ.	1		:
	37.5		SL	1				i		1	1		i	:		,		ļ
29)								Į	1			}			-		
	1,27.5			J			}	İ	!	ļ			ļ		į.	ļ		
	1/28.5			<u> </u>			1			1		<u>.</u>	1			!	[
* Pxc	gin us	€ So (- 46	Con	Raf	1 agar												
	O CA	$\alpha \alpha \gamma \gamma \gamma$	Cary)		S												

				est \	13/13		THERM	OMETER	TEMPER	ATURE I	RECORD							
CORRECT			O:(O _ 0	.5 Mon	thly S	tecili:	ty Inc	spator	TEMP R	ANGE:			58	TO 6	3°C		
	S/N: U	9 5 080	>R		NIST CA	LIBRATE	D AGAIN	ist: 3	FHIC	Ü			CALIBRA	ATION DA	ATE:	1-03	·(a :	
YEAR MONTH	20	1 <mark>3</mark> January	,	j p	EBRUAR	γ	J	MARCH		f	APRIL		f	D 4 A 3/		1	II IX IE	
DAY	r	TIME		TEMP	1	1	TEMP		INTL	TEMP	TIME	INTI	, ТЕМР	MAY TIME	INITI	I TEMP ;	JUNE Time	INTL
1 2 3 4, 5				1275	1730	BK .					:				MIL	I E IVIF	111415	
6 7 8 9 10 11				127.5	1630	/ / /												
13 14 15		· · · · · · · · · · · · · · · · · · ·		127.5	1643 1630 2000	BR BR							 					
17 18 19 20 21	61.5 61.5	1630 1630 1600	BR BR BR				, , , , ,								·			
26 27	28.5 28.5 28.5 28.5	15000 1000	BURN															
30 31	28.5	1630	O.C.				ļ ļ			ļ !	:		<u> </u>					
* Bea	an or	sc to	r Hi	4	へ 下分	rt 96	Cer											

CORRECTION FACTOR: O.O		T		
LOCATION: AM FECAL	となる ED AGAINST: ろないは	TEMP RANGE:	44.3 TO 44.	700
		ı	to result from Britis.	-03-14 ·
YEAR 2012	1	1	1	
MONTH JANUARY FEBRUARY DAY TEMP TIME INTL TEMP TIME INTL	MARCH	APRIL	MAY	JUNE
	· • • • • • • • • • • • • • • • • • • •	TEMP TIME INTL	TEMP TIME INTLET	EMP TIME INTL
			!	
3 44.4 1000 BR 144.5 BB BR		!		
4,44.5 1230 BR 144.5 1200 BR				-
5,44 5 1030 BR				i
6,445 09'S BR 1445 1000 BR	į		Í	
7/44.5 1230 BR 144.4 0930 BR		j	í	
8/ 144.5 1200 B2				
9144.5 0930 BR 144.5 0950 BR				
10 445 CO45 BR 1445 0930 R	4			:
11/4/15 1150 33 1445 10905/				: 4
12/44.5 Q45 BR				
13/44.5 1100 BR 1445 1000 BR				
14 145 600 82 15 445 125 BR				
16,445 0930 BR 445 1000 BR		,		
17,44.5 0830 BR				
18,44.5 1210 BR		1		;
19 44.5 1000 88			j j j	
20,44.5 0955 BR 1				:
21		ą č	1	
22 23 445 1000 20	; ;			
23,4415 1000 BR				
25/04 < 12.15 22.1				;
26144 < 1010 00 1				:
27 LIG 1100 20				
28/44.5 1330 RP				
29			!	
24,44.5 0930 BR 25,44.5 0930 BR 26,44.5 1010 BR 27,44,4 100 BR 28,44.5 1330 BR 29 30,44.5 1030 BR 31,44.5 0950 BR	,			
31/44.5 0450 BR				

THERMOMETER TEMPERATURE RECORD

CODETO		THERMO	OMETER TEMPER	RATURE RECORD				
CORRECTION FACTOR: O LOCA	TION: PM Fea	al Bath RATED AGAIN	7 ST: 3F4 10	TEMP RANGE:		44.3 T	0 44,70C	12
YEAR 2012								
MONTH JANUARY	FEBRUARY		MARCH	APRIL	ļ	MAY	ļ	JUNE
DAY TEMP TIME INT	L TEMP TIME IN	NTL TEMP	TIME INTL	TEMP TIME	INTL	TEMP TIME	INTL TEMP	TIME INTL
2	144.5 1730 BC	7		!	 		!	:
31444 1630 BR	144 x 1/205 B	2		<u> </u>			1	i
4445 1710 88		; i) 				
5 445 1830 BR	4	2	÷			· · · · · · · · · · · · · · · · · · ·		
7/44.5 1630 BR	1445 1630 3					!		
8	1445 1830 B	K i	•			•		
9 49.4 1730 BR 10,445 1630 BZ	1445 1945 B1		•	1		4		
11: THC 1196 (15)	- 1 HUS 17/8 ~		1	į	Í			
15 dd 2/1800 BK	144 4 1600 ve			į	į	i i		
13 445 1765 BC	2/44.5 1645 BK	20		•	Í			:
15		R I	· · ·	ļ	ļ			1
16 44 4 1415 BR	1445 1645 A	R					1	
17; 40, 5 1600 BR			!			! !		!
18,44.5 1630 BR 19,44.5 1800 BR		<u>.</u>	:]			f
201444 000 00	1			, 1	1			ļ. :
21						į .		
23 1700 183812				Í	j			ì
24 44 5 1 CO BR		į						
21 22 23 1700 Eqq q BR 24 445 1700 BR 25 445 1600 BR 26 445 1800 BR 27 445 1700 BR		, ,	:	!	į	:		!
25 445 16 3 RR 26 445 1800 RR 27 445 1700 BR	.]	!		,	į			
28′		!	:		1	1		•
29,		j !					1	
30, 44, 4 1730 BR 31/44. 5 1630 BR) 1		; ; {	1			;
1 22, Mr. 7 1 (B) 1 181 -			<u> </u>					

CORRECTION FACTOR: S/N: 11059	O.O														
S/N: 11550		.	-							······································					
7/1/1/05	LOCATION: (NIST CA	COX LIBRATE	D AGAINST	30°	SE 50	TEMP R. 58 1-13 56 3	ANGE: -12 F 419	1	CALIBRA	54.5 TION D.		35.5° (61-03		-
YEAR 2617	!														
MONTH JANUAR	,	FEBRUAR		, .	1A RCH		ļ	APRIL		ļ	MAY		Į.	JUNE	
DAY TEMP TIME		1	INTL	TEMP	TIME	INTL	TEMP	TIME	INTL	TEMP	TIME	INTL	TEMP :		INTL
1	135.5		e							i			1	į	
21 21 20		5 1730]	;		i i			í			ì		
3/34.5 1630		1612		,			í			Í		,			
4 34.5 1710	BR 1354	1Ja	الحالد	í						í					
5/35.0 1830 6/35.0 1830		1815	Q a	í			í			<u> </u>					
7/35.0 1630	BR 1352) [18 °]	(5.R							:					
8	135	1630	BR	;	i			1		:				-	
9/345 1730	122 1261	1045	00	, ,						!			1.		
10 55 0 16 30	B.2 35	0 1845			:					ļ ·		!	1		
11/35/0 1730	136.	0 1700	-	f :						!			<u> </u>	:	
12,35.0 1800		5/600	. Ru	!	:			:				!	į	i	
13/55,0 1705	BK 135.	5 1648	BR	!						į i		i	ĺ	·	
14		5 1630		!	İ			÷					í.	İ	
16/345 1415	135.	0 2005		ĺ	İ			i	1			i) 1		
17 34.5 14020	BR	1645	BK	j	:		Í	. !		í		I			
18/35 2 1630				í			í			1			i	!	
19 35.0 1800	RR	!		í						į. I i		· !			
20/35.0 1760	BR		l	1	:		:	:							
21	!				:										
22					:]		!		;	,				
23, 34,5 1700 24, 55.0 1700 25,75.0 165 26,35.0 1800	BR			4			į	İ			,		,		
24, 35.0 17 ⁰⁰	Be	-		1	į		. !						!	1	
26/25/0 1/6/2	32												!	į	
27/35.0 17°°	312 BR			!	!				i.	!			į		
27 35.0 17°° 28	72%			!			:		į				į .	:	
20!	!	i i		1				į			i •		j .	į	
35.5 1730	BR	ì		1)			:		i		
Adjust0 35.5 1730 pc V 31/36 0 1630	QL !			Í	:	ı	į	:	i		ļ		1	[

Start Test No EZ	Day 1 x Sample Test Day 1 x x Day 1 x x Day 3 3 4 3 4 3 4 5 4 5 4 5 4 5 4 5 4 5 6 5 6 5 6 6 6 6
------------------	--

m-FC and m-ENDO Quality Control

	Batch Code	Date Prepared	Broth	Lot	Sterility	P seud omonas aeruginosa	Enterobacter aerogenes	Escherichia coll	Tech
ļ	5-2012	1/30/12	Mendo	1261174	Neg		+	+	BK
			mf	288320	Neg			-}-	BR
		alulia	mento	126174	Neg	<u></u>	+	+	BR
7	7.243		MFC	A88330	Neg		\$10B-	+	BR
Į	7-2012	2/13/12	Made	1210174	Neg		+	ナ	BR
L			M-FC	288320	Neg			+	BR
-					<u> </u>	• : .			
L							į.		
	!					·			
_		-				ar war and a second			
									·
_									
				<u> </u>					
	· · · · · · · · · · · · · · · · · · ·			:					
-									
_	1						<u> </u>		
_				:	1				
_					173			<u> </u>	
_				: :			5.		
	<u> </u>				!				
_					-				
		<u> </u>							
								ļ	

T T

COPPLETION FACTOR		THERMOMETER TEMPE	RATURE RECORD		
CORRECTION FACTOR:	O, O	- -			
S/N: 11059	LOCATION: Am Mic NIST CALIBE	.ro 'Incobator ATED AGAINST: 3£505	TEMP RANGE:	34.5 TO 3 CALIBRATION DATE: C	5.5°C
YEAR , 2013					
MONTH JANUAR	,	MARCH	APRIL	MAY .	JUNE
DAY TEMP TIME	INTL TEMP TIME IN		TEMP TIME INT	L TEMP TIME INTL	TEMP TIME INTL
1	135.5 Da Bl				j
2	135.5 0935 B/	,			1
3/34.5 1000	BR 135.5 1000 RQ	• · · · · · · · · · · · · · · · · · · ·	1		
4/34.5 1230	BC 320 1300 BC				
5/35.0 : 10 ³⁰					
6/350 OQ15	4.0	•]
7/35.6 1230	BR 135.0 0930 BR				!
9/34.5 0930	135.5 1200 B 88_ 135.0 0050 BB	,			į.
10,345 (7,45	BR 135,0 000 RS	7!		<u> </u>	•
11, 35.0 HSO	BR 136.5 0915 @			Í	1
12/34.5 0945		8 1		1	
13/35.0 1100	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	so (
14		21			
15		R			
16/34.5 0930	BR 35.0 1000 R	R			,
17 34.5 06°25	BR				
18 35.0 12.10	BR	}			ĺ
19/35.0 100	BR	1		į	Í
20/34.5 09.55	BRI			j	ĺ
21		i		Í	1
22/		•		í	
23,345 (va) 24,39.5 (va)	30	1			
25/34.5 12 ¹⁵	BR				j .
25/24 < 18 ¹⁰	BR !				
25/34.5 13 ¹⁵ 26/34.5 につ 27/34.5 11 ⁰⁰	BR				,
28/34.5 /330	BR		}		1
291		!		,	
1030 HO30	BR !			į '	
dys +30, 35,0 1030 181 36.5 6950	BE !		j	j	1

Client:

NEEL REAGENT WATER MONTHLY ANALYSIS

Sample Date:

2/1/2012

PARAMETER	RESULT	LIMIT	ANALYSI DATE	S START	ANALYS DATE	SIS.END*	TECH
CONDUCTIVITY	< 10	<2.0 µmhos / cm	aloilia	1907			RR
CHLORINE RESIDUAL	40.1	< 0.1 mg / L	9101/13	19 10			BR
HETEROTROPIC PLATE COUNT	Plate 1 Plate 2 Plate 2 Final Result	< 500 CFU / ml	əloiliə	1430	62/03/12) y 20	BL

NOTES:

* IF APPLICABLE